维基天文 >>所属分类 >> 物理   

相对论

标签: 相对论

顶[0] 发表评论(0) 编辑词条

相对论(Principle of relativity relativism[5relEtivizEm] relativity[7relE5tiviti] theory of relativity)

(图)相对论相对论

相对论是关于时空引力的基本理论,主要由爱因斯坦(Albert Einstein)创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。相对论的基本假设是相对性原理,即物理定律与参照系的选择无关。狭义相对论和广义相对论的区别是,前者讨论的是匀速直线运动的参照系(惯系参照系)之间的物理定律,后者则推广到具有加速度的参照系中(非惯性系),并在等效原理的假设下,广泛应用于引力场中。相对论和量子力学是现代物理学的两大基本支柱。奠定了经典物理学基础的经典力学,不适用于高速运动的物体和微观领域。相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。相对论颠覆了人类对宇宙和自然的“常识性”观念,提出了“时间和空间的相对性”、“四维时空”、“弯曲空间”等全新的概念。

狭义相对论最著名的推论是质能公式,它可以用来计算核反应过程中所释放的能量,并导致了原子弹的诞生。而广义相对论所预言的引力透镜和黑洞,也相继被天文观测所证实。

目录

[显示全部]

【提出过程】编辑本段回目录

  除了量子理论以外,1905年刚刚得到博士学位的爱因斯坦发表的一篇题为《论动体的电动力学》的文章引发了二十世纪物理学的另一场革命。文章研究的是物体的运动对光学现象的影响,这是当时经典物理学面对的另一个难题。
  十九世纪中叶,麦克斯韦建立了电磁场理论,并预言了以光速C传播的电磁波的存在。到十九世纪末,实验完全证实了麦克斯韦理论。电磁波是什么?它的传播速度C是对谁而言的呢?当时流行的看法是整个宇宙空间充满一种特殊物质叫做“以太”,电磁波是以太振动的传播。但人们发现,这是一个充满矛盾的理论。如果认为地球是在一个静止的以太中运动,那么根据速度叠加原理,在地球上沿不同方向传播的光的速度必定不一样,但是实验否定了这个结论。如果认为以太被地球带着走,又明显与天文学上的一些观测结果不符。
  1887年迈克尔逊和莫雷利用光的干涉现象进行了非常精确的测量,仍没有发现地球有相对于以太的任何运动。对此,洛仑兹(H.A.Lorentz)提出了一个假设,认为一切在以太中运动的物体都要沿运动方向收缩。由此他证明了,即使地球相对以太有运动,迈克尔逊也不可能发现它。爱因斯坦从完全不同的思路研究了这一问题。他指出,只要摒弃牛顿所确立的绝对空间和绝对时间的概念,一切困难都可以解决,根本不需要什么以太。
  爱因斯坦提出了两条基本原理作为讨论运动物体光学现象的基础。第一个叫做相对性原理。它是说:如果坐标系K'相对于坐标系K作匀速运动而没有转动,则相对于这两个坐标系所做的任何物理实验,都不可能区分哪个是坐标系K,哪个是坐标系K′。第二个原理叫光速不变原理,它是说光(在真空中)的速度c是恒定的,它不依赖于发光物体的运动速度。
  从表面上看,光速不变似乎与相对性原理冲突。因为按照经典力学速度的合成法则,对于K′和K这两个做相对匀速运动的坐标系,光速应该不一样。爱因斯坦认为,要承认这两个原理没有抵触,就必须重新分析时间与空间的物理概念。
  经典力学中的速度合成法则实际依赖于如下两个假设:
  1.两个事件发生的时间间隔与测量时间所用的钟的运动状态没有关系;
  2.两点的空间距离与测量距离所用的尺的运动状态无关。
  爱因斯坦发现,如果承认光速不变原理与相对性原理是相容的,那么这两条假设都必须摒弃。这时,对一个钟是同时发生的事件,对另一个钟不一定是同时的,同时性有了相对性。在两个有相对运动的坐标系中,测量两个特定点之间的距离得到的数值不再相等。距离也有了相对性。
  如果设K坐标系中一个事件可以用三个空间坐标x、y、z和一个时间坐标t来确定,而K′坐标系中同一个事件由x′、y′、z′和t′来确定,则爱因斯坦发现,x′、y′、z′和t′可以通过一组方程由x、y、z和t求出来。两个坐标系的相对运动速度和光速c是方程的唯一参数。这个方程最早是由洛仑兹得到的,所以称为洛仑兹变换。
  利用洛仑兹变换很容易证明,钟会因为运动而变慢,尺在运动时要比静止时短,速度的相加满足一个新的法则。相对性原理也被表达为一个明确的数学条件,即在洛仑兹变换下,带撇的空时变量x'、y'、z'、t'将代替空时变量x、y、z、t,而任何自然定律的表达式仍取与原来完全相同的形式。人们称之为普遍的自然定律对于洛仑兹变换是协变的。这一点在我们探索普遍的自然定律方面具有非常重要的作用。
  此外,在经典物理学中,时间是绝对的。它一直充当着不同于三个空间坐标的独立角色。爱因斯坦的相对论把时间与空间联系起来了。认为物理的现实世界是各个事件组成的,每个事件由四个数来描述。这四个数就是它的时空坐标t和x、y、z,它们构成一个四维的连续空间,通常称为闵可夫斯基四维空间。在相对论中,用四维方式来考察物理的现实世界是很自然的。狭义相对论导致的另一个重要的结果是关于质量和能量的关系。在爱因斯坦以前,物理学家一直认为质量和能量是截然不同的,它们是分别守恒的量。爱因斯坦发现,在相对论中质量与能量密不可分,两个守恒定律结合为一个定律。他给出了一个著名的质量-能量公式:E=mc^2,其中c为光速。于是质量可以看作是它的能量的量度。计算表明,微小的质量蕴涵着巨大的能量。这个奇妙的公式为人类获取巨大的能量,制造原子弹和氢弹以及利用原子能发电等奠定了理论基础。
  对爱因斯坦引入的这些全新的概念,大部分物理学家,其中包括相对论变换关系的奠基人洛仑兹,都觉得难以接受。旧的思想方法的障碍,使这一新的物理理论直到一代人之后才为广大物理学家所熟悉,就连瑞典皇家科学院,1922年把诺贝尔奖金授予爱因斯坦时,也只是说“由于他对理论物理学的贡献,更由于他发现了光电效应的定律。”对于相对论只字未提。
  爱因斯坦于1915年进一步建立起了广义相对论。狭义相对性原理还仅限于两个相对做匀速运动的坐标系,而在广义相对论性原理中匀速运动这个限制被取消了。他引入了一个等效原理,认为我们不可能区分引力效应和非匀速运动,即非匀速运动和引力是等效的。他进而分析了光线在靠近一个行星附近穿过时会受到引力而弯折的现象,认为引力的概念本身完全不必要。可以认为行星的质量使它附近的空间变成弯曲,光线走的是最短程线。基于这些讨论,爱因斯坦导出了一组方程,它们可以确定由物质的存在而产生的弯曲空间几何。利用这个方程,爱因斯坦计算了水星近日点的位移量,与实验观测值完全一致,解决了一个长期解释不了的困难问题,这使爱因斯坦激动不已。他在写给埃伦菲斯特的信中这样写道:“……方程给出了近日点的正确数值,你可以想象我有多高兴!有好几天,我高兴得不知怎样才好。”
  1915年11月25日,爱因斯坦把题为“万有引力方程”的论文提交给了柏林的普鲁士科学院,完整地论述了广义相对论。在这篇文章中他不仅解释了天文观测中发现的水星轨道近日点移动之谜,而且还预言:星光经过太阳会发生偏折,偏折角度相当于牛顿理论所预言的数值的两倍。第一次世界大战延误了对这个数值的测定。1919年5月25日的日全食给人们提供了大战后的第一次观测机会。英国人爱丁顿奔赴非洲西海岸的普林西比岛,进行了这一观测。11月6日,汤姆逊在英国皇家学会和皇家天文学会联席会议上郑重宣布:得到证实的是爱因斯坦而不是牛顿所预言的结果。他称赞道“这是人类思想史上最伟大的成就之一。爱因斯坦发现的不是一个小岛,而是整整一个科学思想的新大陆。”泰晤士报以“科学上的革命”为题对这一重大新闻做了报道。消息传遍全世界,爱因斯坦成了举世瞩目的名人。广义相对论也被提高到神话般受人敬仰的宝座。
  从那时以来,人们对广义相对论的实验检验表现出越来越浓厚的兴趣。但由于太阳系内部引力场非常弱,引力效应本身就非常小,广义相对论的理论结果与牛顿引力理论的偏离很小,观测非常困难。七十年代以来,由于射电天文学的进展,观测的距离远远突破了太阳系,观测的精度随之大大提高。特别是1974年9月由麻省理工学院的泰勒和他的学生赫尔斯,用305米口径的大型射电望远镜进行观测时,发现了脉冲双星,它是一个中子星和它的伴星在引力作用下相互绕行,周期只有0.323天,它的表面的引力比太阳表面强十万倍,是地球上甚至太阳系内不可能获得的检验引力理论的实验室。经过长达十余年的观测,他们得到了与广义相对论的预言符合得非常好的结果。由于这一重大贡献,泰勒和赫尔斯获得了1993年诺贝尔物理奖。

【狭义理论】编辑本段回目录

  ·狭义相对论的概念
  马赫和休谟的哲学对爱因斯坦影响很大。马赫认为时间和空间的量度与物质运动有关。时空的观念是通过经验形成的。绝对时空无论依据什么经验也不能把握。休谟更具体的说:空间和广延不是别的,而是按一定次序分布的可见的对象充满空间。而时间总是又能够变化的对象的可觉察的变化而发现的。1905年爱因斯坦指出,迈克尔逊和莫雷实验实际上说明关于“以太”的整个概念是多余的,光速是不变的。而牛顿的绝对时空观念是错误的。不存在绝对静止的参照物,时间测量也是随参照系不同而不同的。他用光速不变和相对性原理提出了洛仑兹变换。创立了狭义相对论。
  狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解。在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间。现代微观物理学提到的高维空间是另一层意思,只有数学意义,在此不做讨论。
  四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。我在一个帖子上说过一个例子,一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种“此消彼长”的关系。
  四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大。在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。在四维时空里,动量和能量实现了统一,称为能量动量四矢。另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。可以说至少它比牛顿力学要完美的多。至少由它的完美性,我们不能对它妄加怀疑。
  相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系。
  ·狭义论公式
  相对论公式及证明
  单位 符号 单位 符号
  坐标: m (x,y,z) 力: N F(f)
  时间: s t(T) 质量:kg m(M)
  位移: m r 动量:kg*m/s p(P)
  速度: m/s v(u) 能量: J E
  加速度: m/s^2 a 冲量:N*s I
  长度: m l(L) 动能:J Ek
  路程: m s(S) 势能:J Ep
  角速度: rad/s ω 力矩:N*m M
  角加速度:rad/s^2α 功率:W P
  一:
  牛顿力学(预备知识)
  (一):质点运动学基本公式:(1)v=dr/dt,r=r0 ∫rdt
  (2)a=dv/dt,v=v0 ∫adt
  (注:两式中左式为微分形式,右式为积分形式)
  当v不变时,(1)表示匀速直线运动。
  当a不变时,(2)表示匀变速直线运动。
  只要知道质点的运动方程r=r(t),它的一切运动规律就可知了。
  (二):质点动力学:
  (1)牛一:不受力的物体做匀速直线运动。
  (2)牛二:物体加速度与合外力成正比与质量成反比。
  F=ma=mdv/dt=dp/dt
  (3)牛三:作用力与反作与力等大反向作用在同一直线上。
  (4)万有引力:两质点间作用力与质量乘积成正比,与距离平方成反比。
  F=GMm/r^2,G=6.67259*10^(-11)m^3/(kg*s^2)
  动量定理:I=∫Fdt=p2-p1(合外力的冲量等于动量的变化)
  动量守恒:合外力为零时,系统动量保持不变。
  动能定理:W=∫Fds=Ek2-Ek1(合外力的功等于动能的变化)
  机械能守恒:只有重力做功时,Ek1 Ep1=Ek2 Ep2
  (注:牛顿力学的核心是牛二:F=ma,它是运动学与动力学的桥梁,我们的目的是知道物体的运动规律,即求解运动方程r=r(t),若知受力情况,根据牛二可得a,再根据运动学基本公式求之。同样,若知运动方程r=r(t),可根据运动学基本公式求a,再由牛二可知物体的受力情况。)
  二、狭义相对论力学
  (注:γ=1/sqr(1-u^2/c^2),β=u/c,u为惯性系速度。)
  1.基本原理:(1)相对性原理:所有惯性系都是等价的。
  (2)光速不变原理:真空中的光速是与惯性系无关的常数。
  (此处先给出公式再给出证明)
  2.洛仑兹坐标变换:
  X=γ(x-ut)
  Y=y
  Z=z
  T=γ(t-ux/c^2)
  3.速度变换:
  V(x)=(v(x)-u)/(1-v(x)u/c^2)
  V(y)=v(y)/(γ(1-v(x)u/c^2))
  V(z)=v(z)/(γ(1-v(x)u/c^2))
  4.尺缩效应:△L=△l/γ或dL=dl/γ
  5.钟慢效应:△t=γ△τ或dt=dτ/γ
  6.光的多普勒效应:ν(a)=sqr((1-β)/(1 β))ν(b)
  (光源与探测器在一条直线上运动。)
  7.动量表达式:P=Mv=γmv,即M=γm
  8.相对论力学基本方程:F=dP/dt
  9.质能方程:E=Mc^2
  10.能量动量关系:E^2=(E0)^2 P^2c^2
  (注:在此用两种方法证明,一种在三维空间内进行,一种在四维时空中证明,实际上他们是等价的。)
  *******************************************************************************
  三、三维证明
  1.由实验总结出的公理,无法证明。
  2.洛仑兹变换:
  设(x,y,z,t)所在坐标系(A系)静止,(X,Y,Z,T)所在坐标系(B系)速度为u,且沿x轴正向。在A系原点处,x=0,B系中A原点的坐标为X=-uT,即X uT=0。
  可令
  x=k(X uT) (1).
  又因在惯性系内的各点位置是等价的,因此k是与u有关的常数(广义相对论中,由于时空弯曲,各点不再等价,因此k不再是常数。)同理,B系中的原点处有X=K(x-ut),由相对性原理知,两个惯性系等价,除速度反向外,两式应取相同的形式,即k=K.
  故有
  X=k(x-ut) (2).
  对于y,z,Y,Z皆与速度无关,可得
  Y=y (3).
  Z=z (4).
  将(2)代入(1)可得:x=k^2(x-ut) kuT,即
  T=kt ((1-k^2)/(ku))x (5).
  (1)(2)(3)(4)(5)满足相对性原理,要确定k需用光速不变原理。当两系的原点重合时,由重合点发出一光信号,则对两系分别有x=ct,X=cT.
  代入(1)(2)式得:ct=kT(c u),cT=kt(c-u).两式相乘消去t和T得:
  k=1/sqr(1-u^2/c^2)=γ.将γ反代入(2)(5)式得坐标变换:
  X=γ(x-ut)
  Y=y
  Z=z
  T=γ(t-ux/c^2)
  3.速度变换:
  V(x)=dX/dT=γ(dx-ut)/(γ(dt-udx/c^2))
  =(dx/dt-u)/(1-(dx/dt)u/c^2)
  =(v(x)-u)/(1-v(x)u/c^2)
  同理可得V(y),V(z)的表达式。
  4.尺缩效应:
  B系中有一与x轴平行长l的细杆,则由X=γ(x-ut)得:△X=γ(△x-u△t),又△t=0(要同时测量两端的坐标),则△X=γ△x,即:△l=γ△L,△L=△l/γ
  5.钟慢效应:
  由坐标变换的逆变换可知,t=γ(T Xu/c^2),故△t=γ(△T △Xu/c^2),又△X=0,(要在同地测量),故△t=γ△T.
  (注:与坐标系相对静止的物体的长度、质量和时间间隔称固有长度、静止质量和固有时,是不随坐标变换而变的客观量。)
  6.光的多普勒效应:(注:声音的多普勒效应是:ν(a)=((u v1)/(u-v2))ν(b).)
  B系原点处一光源发出光信号,A系原点有一探测器,两系中分别有两个钟,当两系原点重合时,校准时钟开始计时。B系中光源频率为ν(b),波数为N,B系的钟测得的时间是△t(b),由钟慢效应可知,A△系中的钟测得的时间为
  △t(a)=γ△t(b) (1).
  探测器开始接收时刻为t1 x/c,最终时刻为t2 (x v△t(a))/c,则
  △t(N)=(1 β)△t(a) (2).
  相对运动不影响光信号的波数,故光源发出的波数与探测器接收的波数相同,即
  ν(b)△t(b)=ν(a)△t(N) (3).
  由以上三式可得:
  ν(a)=sqr((1-β)/(1 β))ν(b).
  7.动量表达式:(注:dt=γdτ,此时,γ=1/sqr(1-v^2/c^2)因为对于动力学质点可选自身为参考系,β=v/c)
  牛顿第二定律在伽利略变换下,保持形势不变,即无论在那个惯性系内,牛顿第二定律都成立,但在洛伦兹变换下,原本简洁的形式变得乱七八糟,因此有必要对牛顿定律进行修正,要求是在坐标变换下仍保持原有的简洁形式。
  牛顿力学中,v=dr/dt,r在坐标变换下形式不变,(旧坐标系中为(x,y,z)新坐标系中为(X,Y,Z))只要将分母替换为一个不变量(当然非固有时dτ莫属)就可以修正速度的概念了。即令V=dr/dτ=γdr/dt=γv为相对论速度。牛顿动量为p=mv,将v替换为V,可修正动量,即p=mV=γmv。定义M=γm(相对论质量)则p=Mv.这就是相对论力学的基本量:相对论动量。(注:我们一般不用相对论速度而是用牛顿速度来参与计算)
  8.相对论力学基本方程:
  由相对论动量表达式可知:F=dp/dt,这是力的定义式,虽与牛顿第二定律的形式完全一样,但内涵不一样。(相对论中质量是变量)
  9.质能方程:
  Ek=∫Fdr=∫(dp/dt)*dr=∫dp*dr/dt=∫vdp=pv-∫pdv
  =Mv^2-∫mv/sqr(1-v^2/c^2)dv=Mv^2 mc^2*sqr(1-v^2/c^2)-mc^2
  =Mv^2 Mc^2(1-v^2/c^2)-mc^2
  =Mc^2-mc^2
  即E=Mc^2=Ek mc^2
  10.能量动量关系:
  E=Mc^2,p=Mv,γ=1/sqr(1-v^2/c^2),E0=mc^2,可得:E^2=(E0)^2 p^2c^2
  *******************************************************************************
  四、四维证明:
  1.公理,无法证明。
  2.坐标变换:由光速不变原理:dl=cdt,即dx^2 dy^2 dz^2 (icdt)^2=0在任意惯性系内都成立。定义dS为四维间隔,
  dS^2=dx^2 dy^2 dz^2 (icdt)^2 (1).
  则对光信号dS恒等于0,而对于任意两时空点的dS一般不为0。dS^2>0称类空间隔,dS^2<0称类时间隔,dS^2=0称类光间隔。相对论原理要求(1)式在坐标变换下形式不变,因此(1)式中存在与坐标变换无关的不变量,dS^2dS^2光速不变原理要求光信号在坐标变换下dS是不变量。因此在两个原理的共同制约下,可得出一个重要的结论:dS是坐标变换下的不变量。
  由数学的旋转变换公式有:(保持y,z轴不动,旋转x和ict轴)
  X=xcosφ (ict)sinφ
  icT=-xsinφ (ict)cosφ
  Y=y
  Z=z
  当X=0时,x=ut,则0=utcosφ ictsinφ
  得:tanφ=iu/c,则cosφ=γ,sinφ=iuγ/c反代入上式得:
  X=γ(x-ut)
  Y=y
  Z=z
  T=γ(t-ux/c^2)
  3.4.5.6.略。
  7.动量表达式及四维矢量:(注:γ=1/sqr(1-v^2/c^2),下式中dt=γdτ)
  令r=(x,y,z,ict)则将v=dr/dt中的dt替换为dτ,V=dr/dτ称四维速度。
  则V=(γv,icγ)γv为三维分量,v为三维速度,icγ为第四维分量。(以下同理)
  四维动量:P=mV=(γmv,icγm)=(Mv,icM)
  四维力:f=dP/dτ=γdP/dt=(γF,γicdM/dt)(F为三维力)
  四维加速度:ω=/dτ=(γ^4a,γ^4iva/c)
  则f=mdV/dτ=mω
  8.略。
  9.质能方程:
  fV=mωV=m(γ^5va i^2γ^5va)=0
  故四维力与四维速度永远“垂直”,(类似于洛伦兹磁场力)
  由fV=0得:γ^2mFv γic(dM/dt)(icγm)=0(F,v为三维矢量,且Fv=dEk/dt(功率表达式))
  故dEk/dt=c^2dM/dt即∫dEk=c^2∫dM,即:Ek=Mc^2-mc^2
  故E=Mc^2=Ek mc^2
  ·狭义论原理
  物质在相互作用中作永恒的运动,没有不运动的物质,也没有无物质的运动,由于物质是在相互联系,相互作用中运动的,因此,必须在物质的相互关系中描述运动,而不可能孤立的描述运动。也就是说,运动必须有一个参考物,这个参考物就是参考系。
  伽利略曾经指出,运动的船与静止的船上的运动不可区分,也就是说,当你在封闭的船舱里,与外界完全隔绝,那么即使你拥有最发达的头脑,最先进的仪器,也无从感知你的船是匀速运动,还是静止。更无从感知速度的大小,因为没有参考。比如,我们不知道我们整个宇宙的整体运动状态,因为宇宙是封闭的。爱因斯坦将其引用,作为狭义相对论的第一个基本原理:狭义相对性原理。其内容是:惯性系之间完全等价,不可区分。
  著名的麦克尔逊·莫雷实验彻底否定了光的以太学说,得出了光与参考系无关的结论。也就是说,无论你站在地上,还是站在飞奔的火车上,测得的光速都是一样的。这就是狭义相对论的第二个基本原理:光速不变原理。
  由这两条基本原理可以直接推导出相对论的坐标变换式,速度变换式等所有的狭义相对论内容。比如速度变幻,与传统的法则相矛盾,但实践证明是正确的,比如一辆火车速度是10m/s,一个人在车上相对车的速度也是10m/s,地面上的人看到车上的人的速度不是20m/s,而是(20-10^(-15))m/s左右。在通常情况下,这种相对论效应完全可以忽略,但在接近光速时,这种效应明显增大,比如,火车速度是0.99倍光速,人的速度也是0.99倍光速,那么地面观测者的结论不是1.98倍光速,而是0.999949倍光速。车上的人看到后面的射来的光也没有变慢,对他来说也是光速。因此,从这个意义上说,光速是不可超越的,因为无论在那个参考系,光速都是不变的。速度变换已经被粒子物理学的无数实验证明,是无可挑剔的。正因为光的这一独特性质,因此被选为四维时空的唯一标尺。
  ·狭义论效应
  根据狭义相对性原理,惯性系是完全等价的,因此,在同一个惯性系中,存在统一的时间,称为同时性,而相对论证明,在不同的惯性系中,却没有统一的同时性,也就是两个事件(时空点)在一个惯性系内同时,在另一个惯性系内就可能不同时,这就是同时的相对性,在惯性系中,同一物理过程的时间进程是完全相同的,如果用同一物理过程来度量时间,就可在整个惯性系中得到统一的时间。在今后的广义相对论中可以知道,非惯性系中,时空是不均匀的,也就是说,在同一非惯性系中,没有统一的时间,因此不能建立统一的同时性。
  相对论导出了不同惯性系之间时间进度的关系,发现运动的惯性系时间进度慢,这就是所谓的钟慢效应。可以通俗的理解为,运动的钟比静止的钟走得慢,而且,运动速度越快,钟走的越慢,接近光速时,钟就几乎停止了。
  尺子的长度就是在一惯性系中"同时"得到的两个端点的坐标值的差。由于"同时"的相对性,不同惯性系中测量的长度也不同。相对论证明,在尺子长度方向上运动的尺子比静止的尺子短,这就是所谓的尺缩效应,当速度接近光速时,尺子缩成一个点。
  由以上陈述可知,钟慢和尺缩的原理就是时间进度有相对性。也就是说,时间进度与参考系有关。这就从根本上否定了牛顿的绝对时空观,相对论认为,绝对时间是不存在的,然而时间仍是个客观量。比如在下期将讨论的双生子理想实验中,哥哥乘飞船回来后是15岁,弟弟可能已经是45岁了,说明时间是相对的,但哥哥的确是活了15年,弟弟也的确认为自己活了45年,这是与参考系无关的,时间又是"绝对的"。这说明,不论物体运动状态如何,它本身所经历的时间是一个客观量,是绝对的,这称为固有时。也就是说,无论你以什么形式运动,你都认为你喝咖啡的速度很正常,你的生活规律都没有被打乱,但别人可能看到你喝咖啡用了100年,而从放下杯子到寿终正寝只用了一秒钟。
  ·狭义论小结
  相对论要求物理定律要在坐标变换(洛伦兹变化)下保持不变。经典电磁理论可以不加修改而纳入相对论框架,而牛顿力学只在伽利略变换中形势不变,在洛伦兹变换下原本简洁的形式变得极为复杂。因此经典力学与要进行修改,修改后的力学体系在洛伦兹变换下形势不变,称为相对论力学。
  狭义相对论建立以后,对物理学起到了巨大的推动作用。并且深入到量子力学的范围,成为研究高速粒子不可缺少的理论,而且取得了丰硕的成果。然而在成功的背后,却有两个遗留下的原则性问题没有解决。第一个是惯性系所引起的困难。抛弃了绝对时空后,惯性系成了无法定义的概念。我们可以说惯性系是惯性定律在其中成立的参考系。惯性定律实质一个不受外力的物体保持静止或匀速直线运动的状态。然而"不受外力"是什么意思?只能说,不受外力是指一个物体能在惯性系中静止或匀速直线运动。这样,惯性系的定义就陷入了逻辑循环,这样的定义是无用的。我们总能找到非常近似的惯性系,但宇宙中却不存在真正的惯性系,整个理论如同建筑在沙滩上一般。第二个是万有引力引起的困难。万有引力定律与绝对时空紧密相连,必须修正,但将其修改为洛伦兹变换下形势不变的任何企图都失败了,万有引力无法纳入狭义相对论的框架。当时物理界只发现了万有引力和电磁力两种力,其中一种就冒出来捣乱,情况当然不会令人满意。
  爱因斯坦只用了几个星期就建立起了狭义相对论,然而为解决这两个困难,建立起广义相对论却用了整整十年时间。为解决第一个问题,爱因斯坦干脆取消了惯性系在理论中的特殊地位,把相对性原理推广到非惯性系。因此第一个问题转化为非惯性系的时空结构问题。在非惯性系中遇到的第一只拦路虎就是惯性力。在深入研究了惯性力后,提出了著名的等性原理,发现参考系问题有可能和引力问题一并解决。几经曲折,爱因斯坦终于建立了完整的广义相对论。广义相对论让所有物理学家大吃一惊,引力远比想象中的复杂的多。至今为止爱因斯坦的场方程也只得到了为数不多的几个确定解。它那优美的数学形式至今令物理学家们叹为观止。就在广义相对论取得巨大成就的同时,由哥本哈根学派创立并发展的量子力学也取得了重大突破。然而物理学家们很快发现,两大理论并不相容,至少有一个需要修改。于是引发了那场著名的论战:爱因斯坦VS哥本哈根学派。直到现在争论还没有停止,只是越来越多的物理学家更倾向量子理论。爱因斯坦为解决这一问题耗费了后半生三十年光阴却一无所获。不过他的工作为物理学家们指明了方向:建立包含四种作用力的超统一理论。目前学术界公认的最有希望的候选者是超弦理论与超膜理论。

【佯谬问题】编辑本段回目录

  ·时钟双生子佯谬
   相对论诞生后,曾经有一个令人极感兴趣的疑难问题---双生子佯谬。一对双生子A和B,A在地球上,B乘火箭去做星际旅行,经过漫长岁月返回地球。爱因斯坦由相对论断言,二人经历的时间不同,重逢时B将比A年轻。许多人有疑问,认为A看B在运动,B看A也在运动,为什么不能是A比B年轻呢?由于地球可近似为惯性系,B要经历加速与减速过程,是变加速运动参考系,真正讨论起来非常复杂,因此这个爱因斯坦早已讨论清楚的问题被许多人误认为相对论是自相矛盾的理论。如果用时空图和世界线的概念讨论此问题就简便多了,只是要用到许多数学知识和公式。在此只是用语言来描述一种最简单的情形。不过只用语言无法更详细说明细节,有兴趣的请参考一些相对论书籍。我们的结论是,无论在那个参考系中,B都比A年轻。
  为使问题简化,只讨论这种情形,火箭经过极短时间加速到亚光速,飞行一段时间后,用极短时间掉头,又飞行一段时间,用极短时间减速与地球相遇。这样处理的目的是略去加速和减速造成的影响。在地球参考系中很好讨论,火箭始终是动钟,重逢时B比A年轻。在火箭参考系内,地球在匀速过程中是动钟,时间进程比火箭内慢,但最关键的地方是火箭掉头的过程。在掉头过程中,地球由火箭后方很远的地方经过极短的时间划过半个圆周,到达火箭的前方很远的地方。这是一个"超光速"过程。只是这种超光速与相对论并不矛盾,这种"超光速"并不能传递任何信息,不是真正意义上的超光速。如果没有这个掉头过程,火箭与地球就不能相遇,由于不同的参考系没有统一的时间,因此无法比较他们的年龄,只有在他们相遇时才可以比较。火箭掉头后,B不能直接接受A的信息,因为信息传递需要时间。B看到的实际过程是在掉头过程中,地球的时间进度猛地加快了。在B看来,A先是比B年轻,接着在掉头时迅速衰老,返航时,A又比自己衰老的慢了。重逢时,自己仍比A年轻。也就是说,相对论不存在逻辑上的矛盾。

【广义理论】编辑本段回目录

  ·广义相对论的概念
  相对论问世,人们看到的结论就是:四维弯曲时空,有限无边宇宙,引力波,引力透镜,大爆炸宇宙学说,以及二十一世纪的主旋律--黑洞等等。这一切来的都太突然,让人们觉得相对论神秘莫测,因此在相对论问世头几年,一些人扬言"全世界只有十二个人懂相对论"。甚至有人说"全世界只有两个半人懂相对论"。更有甚者将相对论与"通灵术","招魂术"之类相提并论。其实相对论并不神秘,它是最脚踏实地的理论,是经历了千百次实践检验的真理,更不是高不可攀的。
  相对论应用的几何学并不是普通的欧几里得几何,而是黎曼几何。相信很多人都知道非欧几何,它分为罗氏几何与黎氏几何两种。黎曼从更高的角度统一了三种几何,称为黎曼几何。在非欧几何里,有很多奇怪的结论。三角形内角和不是180度,圆周率也不是3.14等等。因此在刚出台时,倍受嘲讽,被认为是最无用的理论。直到在球面几何中发现了它的应用才受到重视。
  空间如果不存在物质,时空是平直的,用欧氏几何就足够了。比如在狭义相对论中应用的,就是四维伪欧几里得空间。加一个伪字是因为时间坐标前面还有个虚数单位i。当空间存在物质时,物质与时空相互作用,使时空发生了弯曲,这是就要用非欧几何。
  相对论预言了引力波的存在,发现了引力场与引力波都是以光速传播的,否定了万有引力定律的超距作用。当光线由恒星发出,遇到大质量天体,光线会重新汇聚,也就是说,我们可以观测到被天体挡住的恒星。一般情况下,看到的是个环,被称为爱因斯坦环。爱因斯坦将场方程应用到宇宙时,发现宇宙不是稳定的,它要么膨胀要么收缩。当时宇宙学认为,宇宙是无限的,静止的,恒星也是无限的。于是他不惜修改场方程,加入了一个宇宙项,得到一个稳定解,提出有限无边宇宙模型。不久哈勃发现著名的哈勃定律,提出了宇宙膨胀学说。爱因斯坦为此后悔不已,放弃了宇宙项,称这是他一生最大的错误。在以后的研究中,物理学家们惊奇的发现,宇宙何止是在膨胀,简直是在爆炸。极早期的宇宙分布在极小的尺度内,宇宙学家们需要研究粒子物理的内容来提出更全面的宇宙演化模型,而粒子物理学家需要宇宙学家们的观测结果和理论来丰富和发展粒子物理。这样,物理学中研究最大和最小的两个目前最活跃的分支:粒子物理学和宇宙学竟这样相互结合起来。就像高中物理序言中说的那样,如同一头怪蟒咬住了自己的尾巴。值得一提的是,虽然爱因斯坦的静态宇宙被抛弃了,但它的有限无边宇宙模型却是宇宙未来三种可能的命运之一,而且是最有希望的。近年来宇宙项又被重新重视起来了。黑洞问题将在今后的文章中讨论。黑洞与大爆炸虽然是相对论的预言,它们的内容却已经超出了相对论的限制,与量子力学,热力学结合的相当紧密。今后的理论有希望在这里找到突破口。
  ·广义论公式
  根据广义相对论中“宇宙中一切物质的运动都可以用曲率来描述,引力场实际上就是一个弯曲的时空”的思想,爱因斯坦给出了著名的引力场方程(Einstein's field equation): R_ - fracg_ R = - 8 pi {G over c^2} T_
  其中 G 为牛顿万有引力常数,这被称为爱因斯坦引力场方程,也叫爱因斯坦场方程。 该方程是一个以时空为自变量、以度规为因变量的带有椭圆型约束的二阶双曲型偏微分方程。它以复杂而美妙著称,但并不完美,计算时只能得到近似解。最终人们得到了真正球面对称的准确解——史瓦兹解。 加入宇宙学常数后的场方程为: R_ - fracg_ R Lambda g_= - 8 pi {G over c^2} T_
  ·广义论原理
  由于惯性系无法定义,爱因斯坦将相对性原理推广到非惯性系,提出了广义相对论的第一个原理:广义相对性原理。其内容是,所有参考系在描述自然定律时都是等效的。这与狭义相对性原理有很大区别。在不同参考系中,一切物理定律完全等价,没有任何描述上的区别。但在一切参考系中,这是不可能的,只能说不同参考系可以同样有效的描述自然律。这就需要我们寻找一种更好的描述方法来适应这种要求。通过狭义相对论,很容易证明旋转圆盘的圆周率大于3.14。因此,普通参考系应该用黎曼几何来描述。第二个原理是光速不变原理:光速在任意参考系内都是不变的。它等效于在四维时空中光的时空点是不动的。当时空是平直的,在三维空间中光以光速直线运动,当时空弯曲时,在三维空间中光沿着弯曲的空间运动。可以说引力可使光线偏折,但不可加速光子。第三个原理是最著名的等效原理。质量有两种,惯性质量是用来度量物体惯性大小的,起初由牛顿第二定律定义。引力质量度量物体引力荷的大小,起初由牛顿的万有引力定律定义。它们是互不相干的两个定律。惯性质量不等于电荷,甚至目前为止没有任何关系。那么惯性质量与引力质量(引力荷)在牛顿力学中不应该有任何关系。然而通过当代最精密的试验也无法发现它们之间的区别,惯性质量与引力质量严格成比例(选择适当系数可使它们严格相等)。广义相对论将惯性质量与引力质量完全相等作为等效原理的内容。惯性质量联系着惯性力,引力质量与引力相联系。这样,非惯性系与引力之间也建立了联系。那么在引力场中的任意一点都可以引入一个很小的自由降落参考系。由于惯性质量与引力质量相等,在此参考系内既不受惯性力也不受引力,可以使用狭义相对论的一切理论。初始条件相同时,等质量不等电荷的质点在同一电场中有不同的轨道,但是所有质点在同一引力场中只有唯一的轨道。等效原理使爱因斯坦认识到,引力场很可能不是时空中的外来场,而是一种几何场,是时空本身的一种性质。由于物质的存在,原本平直的时空变成了弯曲的黎曼时空。在广义相对论建立之初,曾有第四条原理,惯性定律:不受力(除去引力,因为引力不是真正的力)的物体做惯性运动。在黎曼时空中,就是沿着测地线运动。测地线是直线的推广,是两点间最短(或最长)的线,是唯一的。比如,球面的测地线是过球心的平面与球面截得的大圆的弧。但广义相对论的场方程建立后,这一定律可由场方程导出,于是惯性定律变成了惯性定理。值得一提的是,伽利略曾认为匀速圆周运动才是惯性运动,匀速直线运动总会闭合为一个圆。这样提出是为了解释行星运动。他自然被牛顿力学批的体无完肤,然而相对论又将它复活了,行星做的的确是惯性运动,只是不是标准的匀速。
  ·广义论的验证
  爱因斯坦在建立广义相对论时,就提出了三个实验,并很快就得到了验证:(1)引力红移(2)光线偏折(3)水星近日点进动。直到最近才增加了第四个验证:(4)雷达回波的时间延迟。
  (1)引力红移:广义相对论证明,引力势低的地方固有时间的流逝速度慢。也就是说离天体越近,时间越慢。这样,天体表面原子发出的光周期变长,由于光速不变,相应的频率变小,在光谱中向红光方向移动,称为引力红移。宇宙中有很多致密的天体,可以测量它们发出的光的频率,并与地球的相应原子发出的光作比较,发现红移量与相对论预言一致。60年代初,人们在地球引力场中利用伽玛射线的无反冲共振吸收效应(穆斯堡尔效应)测量了光垂直传播22。5M产生的红移,结果与相对论预言一致。
  (2)光线偏折:如果按光的波动说,光在引力场中不应该有任何偏折,按半经典式的"量子论加牛顿引力论"的混合产物,用普朗克公式E=hr和质能公式E=MC^2求出光子的质量,再用牛顿万有引力定律得到的太阳附近的光的偏折角是0.87秒,按广义相对论计算的偏折角是1.75秒,为上述角度的两倍。1919年,一战刚结束,英国科学家爱丁顿派出两支考察队,利用日食的机会观测,观测的结果约为1.7秒,刚好在相对论实验误差范围之内。引起误差的主要原因是太阳大气对光线的偏折。最近依靠射电望远镜可以观测类星体的电波在太阳引力场中的偏折,不必等待日食这种稀有机会。精密测量进一步证实了相对论的结论。
  (3)水星近日点的进动:天文观测记录了水星近日点每百年移动5600秒,人们考虑了各种因素,根据牛顿理论只能解释其中的5557秒,只剩43秒无法解释。广义相对论的计算结果与万有引力定律(平方反比定律)有所偏差,这一偏差刚好使水星的近日点每百年移动43秒。
  (4)雷达回波实验:从地球向行星发射雷达信号,接收行星反射的信号,测量信号往返的时间,来检验空间是否弯曲(检验三角形内角和)60年代,美国物理学家克服重重困难做成了此实验,结果与相对论预言相符。
  (5其他实验参见:【相对论验证实验系列】 http://tieba.baidu.com/f?kz=323205530
  仅仅依靠这些实验不足以说明相对论的正确性,只能说明它是比牛顿引力理论更精确的理论,因为它既包含牛顿引力论,又可以解释牛顿理论无法解释的现象。但不能保证这就是最好的理论,因此,广义相对论仍面临考验。

【蚁蜂说法】编辑本段回目录

  ·蚂蚁与蜜蜂几何学
  设想有一种生活在二维面上的扁平蚂蚁,因为是二维生物,所以没有第三维感觉。如果蚂蚁生活在大平面上,就从实践中创立欧氏几何。如果它生活在一个球面上,就会创立一种三角和大于180度,圆周率小于3.14的球面几何学。但是,如果蚂蚁生活在一个很大的球面上,当它的“科学”还不够发达,活动范围还不够大,它不足以发现球面的弯曲,它生活的小块球面近似于平面,因此它将先创立欧氏几何学。当它的“科学技术”发展起来时,它会发现三角和大于180度,圆周率小于3.14等“实验事实”。如果蚂蚁够聪明,它会得到结论,它们的宇宙是一个弯曲的二维空间,当它把自己的“宇宙”测量遍了时,会得出结论,它们的宇宙是封闭的(绕一圈还会回到原地),有限的,而且由于“空间”(曲面)的弯曲程度(曲率)处处相同,它们会将宇宙与自己的宇宙中的圆类比起来,认为宇宙是“圆形的”。由于没有第三维感觉,所以它无法想象,它们的宇宙是怎样弯曲成一个球的,更无法想象它们这个“无边无际”的宇宙是存在于一个三维平直空间中的有限面积的球面。它们很难回答“宇宙外面是什么”这类问题。因为,它们的宇宙是有限无边的封闭的二维空间,很难形成“外面”这一概念。
  对于蚂蚁必须借助“发达的科技”才能发现的抽象的事实,一只蜜蜂却可以很容易凭直观形象的描述出来。因为蜜蜂是三维空间的生物,对于嵌在三维空间的二维曲面是“一目了然”的,也很容易形成球面的概念。蚂蚁凭借自己的“科学技术”得到了同样的结论,却很不形象,是严格数学化的。
  由此可见,并不是只有高维空间的生物才能发现低维空间的情况,聪明的蚂蚁一样可以发现球面的弯曲,并最终建立起完善的球面几何学,其认识深度并不比蜜蜂差多少。
  黎曼几何是一个庞大的几何公理体系,专门用于研究弯曲空间的各种性质。球面几何只是它极小的一个分支。它不仅可用于研究球面,椭圆面,双曲面等二维曲面,还可用于高维弯曲空间的研究。它是广义相对论最重要的数学工具。黎曼在建立黎曼几何时曾预言,真实的宇宙可能是弯曲的,物质的存在就是空间弯曲的原因。这实际上就是广义相对论的核心内容。只是当时黎曼没有像爱因斯坦那样丰富的物理学知识,因此无法建立广义相对论。

【批评声音】编辑本段回目录

  (来源: 倒相对论 南丰公益书院 )
  ·倒相对论
  相对论的提出,同样受到很多的指责,有很多人认为它是错误的,并大大阻碍了社会的发展。然而这种观点并不被主流科学界所接受。
  ·观点如下:
  1、推翻光的波粒二象性,即证明光只是波,或光只是粒子
  2、推翻光速不变定律,即证明存在以太或存在绝对坐标
  3、证明牛顿理论的正确性
  ·参见
  相对论
  波粒二象性
  光速不变原理
  有学者认为“时间”是人类为了掌握客观事实的运动规律而使用“钟表之类物体”的“运动”做为一种参造物。爱因斯坦之所以说速度只能达到光速的原因是因为他没有意识到我所说的这样一个事实。还有就是人类不可能找到比光还要快的东西。如果超过了光速我们人就看不到了。没有了参照物又怎样确定速度呢?他以原子的运动做为其他物体的参造物。原子的运动速度就是光速,所以无法得更快的速度。我们之所以不能看到或观测到“黑洞”内物质的运动是由于我们无法观测到他,因为他们的速度太快了。我们想得到一个超光速的物体很容易。我们做一个实验就可以了。在一个高速电机上安装一根很长的棍。我们可以通过计算得出棍的末端绕中心点一圈的距离。然后我们开动电机并用原子钟计录时间。我们用机械计数器记录电机的圈数。这样我们就可以计算出棍不端的速度了。之所谓“时间”就是物体运动的一个过程。
  爱因斯坦的相对论,不能说是完全的错了,只是他把速度说了一个极限值,这样就不对了
  ——就现在的技术条件限制,上面这个“超光速的物体”说法有致命的问题:
  1、这个速度的加速过程怎么实现:电机上的棍子得多长?依靠什么能量,需要多少能量来达到需要的转速?如何保证棍子在加速旋转中仍然保持平直,而不是弯的?我们拿一根长点的细竹子,挥起来的时候,竹子是会弯曲起来的。2、如果说可以忽略加速过程,那么就成了这么一种悖论:先假定了一个超光速的运动的例子,然后又用这个例子来证明存在超光速的运动。
  关于超光速还有这么一个反例:在一个密闭空间里面,一个物体在以0.9光速运动。然而,这个空间在宇宙里也在向着同样方向以同样速度运动。那么,物体相当于宇宙,是1.8光速
  科学要发展,学术交流、批评不可少。科学总是在检讨、批判旧学说、旧理论中得到发展。当前,新替代理论也只有通过充分认真分析包含在相对论内的谬误才能开拓出来。相对论的谬误不澄清,新替代理论即狭义相对性原理
  开放分类: 相对论
  如果K'是相对于K作匀速运动而无转动的坐标系,那么,自然现象相对于坐标系K'的实际演变将与相对于坐标系K的实际演变一样依据同样的普遍规律。这个陈述称为相对性原理狭义相对论
  或表述为:
  一切物理规律在任何惯性系中具有相同的形式。这一原理是爱因斯坦对力学相对性原理的推广,又称爱因斯坦相对性原理。狭义相对性原理还可以表述为;
  1.在所有的惯性系中,物理式子的表达方法都相同.
  2.真空中的光速具有相同的量值C.
  〖相对论未来的命运〗
  任何的真理都是相对的,我们并不能排除《相对论》在未来的错误性。就像《物种起源》在当代的命运一样,《相对论》也比将会经受时间的考验。但是人类追求真理的过程必定是不断完善的!
  下面引一个修正相对论者的部分论文:
  “
  简介:运动的物体测量,与静止的不同,尤其在测量速度与运动速度接近时,其影响更加明显,爱因斯坦正是思考物体接近光速运动会发生什么现象,从而发现相对论,但是比相对论效应更明显影响测量结果的测量速度问题,无论在中学、大学还是研究生阶段,我们都没有考虑。下面我们从浅显的声音实验来揭示运动物体测量问题。
  我们先来考虑一个实验(声秒的单位是指在某种实验用声介质中声音走一秒的距离)
  如果一个钟,以0.5倍声速从原点远去,我们会听到什么现象呢?
  一秒钟时,它距离原点0.5声秒距离报1秒,但这个事件我们在原点听见,需要再过0.5秒,于是我们发现,在本地钟1.5秒时,远处的钟报1秒,本地钟3秒时,远离的钟报2秒,也就是我们在忽略测量时间时,误以为远去的钟慢了。而且速度越快,钟慢得越厉害。
  这个现象,是否有普遍意义呢?
  当声波的介质相对于测量者静止时,无论声源速度如何变化,声速不变(只改变音频),这是著名的多普勒实验,其它所有机械波也有类似现象。而对于光速,相对论更是假设了对于任何参照系,光在真空中速度不变!因此,这个现象具有普遍意义,发生在以任何波作测量工具的时候。
  举例来说,运动的火车头发出的声音,相对地面还是声速(声速不变),不是火车速度加声速,而相对火车速度是声速减火车速度(加利略变换);而在超音速飞机内部从机尾向机头发出声音,相对飞机,还是声速(声速不变),而相对地面,是飞机速度加声速(伽利略变换)。因此速度是相对的,相对论变换与伽利略变换并存,而不是排斥。
  推广到普遍的远离情况
  理想点以a倍光速远去,1秒钟远离a*C(光速)距离,在计时起位置要a秒传过来,到达a*C的事件将在a 1秒传到观察者,观察者认为速度为a*C/(1 a),速度永远小于光速。a为1时看到以1/2C远离。
  当a远小于1时,a*C/(1 a)可近似为a*C,也就是实际速度,当a接近于无穷大时,a*C/(1 a)可近似为C,也就是远离速度远小于测量速度时,测量速度可忽略不记,测量结果约等于真实速度;当远离速度远大于测量速度,测量结果约等于测量速度,也就是测量不到超过测量速度的远离情况。
  再来看一下远离的尺
  假设有一把尺长1声秒,而我们的测量地面上有一无限长尺子固定不动,运动尺头尾各有一个探测装置,在探测到与地面某一尺刻度重合时,用声音报出该刻度,我们在地面尺原点接收声音。尺匀速运动逐渐远离,当尺尾报0声秒时,尺头已经距离我们1声秒,而这个距离,要1秒后我们才能收到;当尺尾到1声秒距离时,尺头到2声秒,还是要在我们收到尺尾报1声秒后1秒,我们才能收到尺头报2声秒,于是我们会直观的认为,尺尾先到刻度,尺头后到达它本应立刻到达的刻度,感觉好象远离的尺,缩短了。而且运动速度越快,感觉短的越厉害。
  看看超过声速会发生什么
  超过声速我们将追上钟以前发出的声音,也就是先听到钟敲3下,报3点,再听到钟敲2下,报2点,然后听到钟敲1下,报1点,这就是超过声速时间倒流现象!
  靠近情况
  无人会用爱因斯坦的方法,从物理原理上解释两参照系靠近时的相对论计算方法。下面我来解释一下应该怎样推导接近参照系的情况。
  理想点以0.5倍声速靠近,在距离2声秒时作为记时0点,我们听到2秒时,远处的钟报距离2声秒,2.5秒时听到钟报距离是1.5声秒,3秒时,钟报距离是1声秒,3.5秒时,钟报距离是0.5声秒,4秒,我们与运动的钟相遇,报距离0声秒。
  靠近的钟测量现象变快。
  普遍的规律是以a倍测量速度靠近的理想点,测量速度显示为a/(1-a)。当运动速度远小于测量速度,测量速度可忽略,测量结果约等于真实速度;当运动速度大于0.5倍测量速度,小于1倍测量速度,将测量到超过测量速度的运动现象;当运动速度等于测量速度,物体将和它的历史信号同时到达,我们将无法区分哪个是历史,哪个是现时,也就无法测量;当运动速度大于测量速度,我们将先收到现时信号,后收到历史信号,会感觉物体在向远方退去,这就是负号的含义,当速度无穷大,近似以测量速度远去。
  同理,靠近的尺测量结果也是越来越长。这才是钟慢尺缩现象的物理原理。
  都相对介质运动的情况
  当A物体以a倍测量速度离开介质原点,B物体以b倍测量速度离开介质原点,从B物体测量结果,A是以(a b)/(1 a)速度运动的(如果不承认光传播需要介质,这个结果有待实验证实)。条件是b小于等于1,如果b=1,测量结果将不能追上测量者。
  分析几个关键点:b=0,相当于B静止A远离;a=0,相当于a独自运动,并测量;a远小于1,近似实际速度a b,a趋于无穷大,接近测量速度;由于b小于1,所以a b小于1 a,测量结果,永远小于测量速度。
  钟慢、尺缩、超光速时间倒流现象,都可以用声音试验做出结果,这只能证明爱因斯坦的结论有问题,他忽略了测量速度的问题,把现象当成了物理本质。照本文方法解释相对论,双生子悖论、子回出生前杀父悖论都不存在。
  而很多号称解释双生子悖论的方法,都是想利用加速度这个问题,将问题推给广义相对论。而我们将双生子放在相同的火箭上在太空中匀速远离,这里没有加速度,相对论应表明运动有相对性,只有时间和长度是绝对的,在任何参照系测量都不变,爱因斯坦扭曲时空的做法,无助于高速运动问题的解决。因此爱因斯坦的相对论需要修正。
  爱因斯坦自己的理解,速度无穷大,“绝对同时”有意义,但观测速度上限是光速,因此“绝对同时”无意义。
  说明爱因斯坦有时候明白相对论是由于光速太慢,引起的测量问题。如果测量速度无穷大,则同时性的相对性问题不存在。对一群盲人来说,测量速度的上限是声速,则爱因斯坦奉献给他们的伟大理论将是声速相对论,不能因此得出声速最快。”

《相对论》编译目录编辑本段回目录

  《相对论》是爱因斯坦所著的一部在世界科学理论界影响巨大的著作,主要包括狭义相对论和广义相对论原理的阐述,中文版本由周学政、徐有智编译,编译目录如下:
  ·第一部分 狭义相对论
   1.几何命题的物理意义
  2.坐标系
  3.经典力学中的空间和时间
  4.伽利略坐标系
  5.狭义相对性原理
  6.经典力学中所用到的速度相加原理
  7.光的传播定律与相对性原理的表面抵触
  8.物理学的时间观
  9.同时性的相对性
  10.距离概念的相对性
  11.洛伦兹变换
  12.量杆和时钟在运动时的行为
  13.速度相加原理:斐索试验
  14.相对论的启发作用
  15.狭义相对论的普遍性结果
  16.经验和狭义相对论
  17.四维空间
  ·第二部分 广义相对论
   1.狭义和广义相对性原理
  2.引力场
  3.引力场的思想试验
  4.惯性质量和引力质量相等是广义相对性公设的一个论据
  5.等效原理
  6.经典力学的基础和狭义相对伦的基础在哪些方面不能令人满意
  7.广义相对性原理的几个推论
  8.在转动的参考物上的钟和量杆的行为
  9.欧几里得和非欧几里得连续区域
  10.高斯坐标
  11.狭义相对论得时空连续区可以当作欧几里得连续区
  12.广义相对论得时空连续区不是欧几里得连续区
  13.广义相对论原理的严格表述
  14.在广义相对性原理的基础上理解引力问题.

附件列表


→如果您认为本词条还有待完善,请 编辑词条

上一篇概率论下一篇导热率

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
0

收藏到:  

词条信息

skylook
skylook
超级管理员
词条创建者 发短消息   

相关词条