维基天文 >>所属分类 >> 物理   

光速

标签: 光速

顶[0] 发表评论(0) 编辑词条

光速光速是一个重要的物理常数,符号为c(来自英语中的constant,意为常数;或者拉丁语中的celeritas,意为迅捷),c不仅仅是可见光的传播速度,也是所有电磁波在真空中的传播速度。

目录

[显示全部]

概述编辑本段回目录

光速一个光锥确定地点,遵循因果律,以及那些不是

一个光锥确定地点,遵循因果律,
以及那些不是

真空中的光速等于299,792,458米/秒(1,079,252,848.8千米/小时)。这个速度并不是一个测量值,而是一个定义。它的计算值为(299792500±100)米/秒。国际单位制的基本单位米于1983年10月21日起被定义为光在1/299,792,458秒内传播的距离。使用英制单位,光速约为186,282.397英里/秒,或者670,616,629.384英里/小时,约为1英尺/纳秒。

在任何透明或者半透明的介质(比如玻璃)中,光速会降低;c比光在某种介质中的速度就是这种介质的折射率。重力的改变能够弯曲光所传播的空间,使光像通过凸透镜一样发生弯曲,看上去绕过了质量较大的天体。光弯曲的现象叫做引力透镜效应,根据变化了的光线在光谱外波段呈现的不规则程度,可以推算发光星系的年龄和距离。

根据爱因斯坦的相对论,没有任何物体或信息运动的速度可以超过光速。

光速的测量方法:最早光速的准确数值是通过观测木星对其卫星的掩食测量的。还有转动齿轮法、转镜法、克尔盒法、变频闪光法等光速测量方法。

根据现代物理学,所有电磁波,包括可见光,在真空中的速度是常数,即是光速。强相互作用、电磁作用、弱相互作用传播的速度都是光速,根据广义相对论,万有引力传播的速度也是光速,且已于2003年得以证实。根据电磁学的定律,发放电磁波的对象的速度不会影响电磁波的速度。结合相对性原则,观察者的参考坐标和发放光波的对象的速度不会影响被测量的光速,但会影响波长而产生红移、蓝移。这是狭义相对论的基础。相对论探讨的是光速而不是光,就算光被稍微减慢,也不会影响狭义相对论。

测量简史编辑本段回目录

光速Rømer的观测掩星的io的,从地球
Rømer的观测掩星的io的,从地球
真空中的光速,这是最古老的物理常数之一。最早于1629年艾萨克•毕克曼(beeckman)提出一项试验,一人将遵守闪光灯一炮反映过一面镜子,约一英里。伽利略认为光速是有限的,1638年他请二个人提灯笼各爬上相距仅约一公里的山上,第一组人掀开灯笼,并开始计时,对面山上的人看见亮光后掀开灯笼,第一组看见亮光后,停止计时,这是史上著名的测量光速的掩灯方案,这种测量方法实际测到的主要只是实验者的反应和人手的动作时间。

1676年,奥勒•罗默从木星卫星的观测,得出光速为有限值的结论。观测证实了他的预言,据此,惠更斯推算出光速约为2×108m/s。

1728年,布拉德雷根据恒星光行差求得c=3.1×108m/s。

1849年,斐索用旋转齿轮法求得c=3.153×108m/s。他是第一位用实验方法,测定地面光速的实验者。实验方法大致如下:光从半镀银面反射后,经高速旋转的齿轮投向反射镜,再沿原路返回。如果齿轮转过一齿所需的时间,正好与光往返的时间相等,就可透过半镀银面观测到光,从而根据齿轮的转速计算出光速。

1862年,傅科用旋转镜法测空气中的光速,原理和斐索的旋转齿轮法大同小异,他的结果是c=2.98×108m/s。第三位在地面上测到光速的是考尔纽(M.A.Cornu)。

1874年他改进了斐索的旋转齿轮法,得c=2.9999×108m/s。迈克耳逊改进了傅科的旋转镜法,多次测量光速。

1879年,得c=(2.99910±0.00050)×108m/s.1882年得c=(2.99853±0.00060)×108m/s。后来,他综合旋转镜法和旋转齿轮法的特点,发展了旋转棱镜法。

1924~1927年间,得c=(2.99796±0.00004)×108m/s。迈克耳逊在推算真空中的光速时,应该用空气的群速折射率,可是他用的却是空气的相速折射率。这一错误在1929年被伯奇发觉,经改正后,1926年的结果应为c=(2.99798±0.00004)×108m/s=2997984±4km/s。

后来,由于电子学的发展,用克尔盒、谐振腔、光电测距仪等方法,光速的测定,比直接用光学方法又提高了一个数量级。

60年代激光器发明,运用稳频激光器,可以大大降低光速测量的不确定度。

1973年达0.004ppm,终于在1983年第十七届国际计量大会上作出决定,将真空中的光速定为精确值。

认识程度编辑本段回目录

光速丹麦天文学家罗默(OleRomer)在17世纪首次成功地计算出光速。他使用木星的一颗卫星有规律的轨道运动作为计时器,每次这颗卫星被巨大的行星(木星)所掩食,他便记录下一个“滴答”。但他发现,从地球上观察,这些滴答的出现并不像预想的那么规律,在一年之中会时而快几分钟,时而慢几分钟。

罗默计算出,这些时延是木星和地球在绕太阳运动时它们之间的距离变化所引起的。通过计算一年里地球、木星及其卫星在轨道上的相对位置,他算出了光穿过宇宙空间的速度。罗默于1676年向法国科学院提交了他的结果,数值与目前被接受的值之差不超过30%。

对光之本性的理论探讨也使人们对光速有所了解。19世纪60年代中期,苏格兰科学家詹姆斯•克拉克•麦克斯韦创建了一组方程,描述电磁场在空间中的行为。这个方程的一个解表明,电磁波在真空中必须以约为每秒30万公里的速度传播,与罗默及其后人的测量结果相当接近。

伦敦皇家研究院的迈克尔•法拉第用电场和磁场的概念解释静电力和磁场力,并表明光会受到磁场影响。这证实了可见光事实上是电磁波谱中的一部分。对电磁波谱其它部分——微波红外线紫外线X射线γ射线——传播速度的直接测量表明,它们在真空中都有相同的速度。

用于测量光速的实验不断地变得更精确。到20世纪50年代,电子计时装置已经取代了古老的机械设备。20世纪80年代,通过测量激光和频率(f)和波长(λ),运用c=fλ公式计算出了光速(c)。这些计算以米和秒的标准定义为基础,就像现在一样,1米定义为氪-86源产生的光的波长的1,650,763.73倍,1秒则定义为铯-133原子超精细跃迁放出的辐射频率的9,192,631,770倍。这使得c达到非常高的精度,误差只有十亿分之几。

光速1983年,光速取代了米被选作定义标准,约定为299,792,458米/秒,数值与当时的米定义一致。秒和光速的定义值,表示1米从此定义为光在真空中1/299,792,458秒内走过的距离。因此自1983年以来,不管我们对光速的测量作了多少精确的修正,都不会影响到光速值,却会影响到米的长度。你有多高事实上是由光速定义的。

但光速还定义着比长度更加基本的东西。阿尔伯特•爱因斯坦的工作表明了光速的真正重要性。由于他的功劳,我们知道,光速不仅仅是光子在真空中运动的速度,还是连接时间与空间的基本常数。

爱因斯坦年轻的时候曾经问自己,如果人运动的速度快到足以跟上光的脚步,光看起来是什么样子的。理论上它看上去像是你身边一个静止的峰,但爱因斯坦知道,麦克斯韦方程组不允许这种结果出现。他得出结论认为,要么是麦克斯韦的理论不适用于运动中的观察者,要么是相对运动力学需要更改。

爱因斯坦在他1905年发表的狭义相对论里解决了这个问题。这一理论基于一个通用原则:相对任何以恒定速度运动的观察者来说,不管这个速度是多少,物理原理及光速都是一样的。爱因斯坦的狭义相对论使我们对时间和空间的观念发生了革命性的变化,强调了光速在物理学中的根本地位。

想象你在一枚火箭里,与一道激光脉冲一同冲入宇宙空间。地球上的观察者会看到这一脉冲以光速远去。无论你相对于地球运动的速度为多少,譬如光速的99%罢,光线仍以光速超越你。看起来似乎很荒谬,但这是真的。使这为真的唯一途径,就是你火箭中的居住者和地球表面的观察者以不同方式衡量时间和空间。

时间与空间看上去当然是不同的,这依赖于你是在地球上还是在宇宙空间里。爱因斯坦的广义相对论将引力描述为时空几何结构的扭曲。这种说法的一个推论,就是始终沿可能的最短路径穿越时空的光线,在大质量物体附近会弯曲。这在1919年日食期间观测掠过太阳附近的星光被太阳的质量所弯曲而得到证明。这一观测使爱因斯坦的理论最终得到接受,并为他赢得了世界性的声誉。

但按照基本力学原理,如果光线偏转,它会被加速。这是否将使光速发生变化,动摇相对论的根本原则?在某种意义上是对的:我们从地球上观察到的光速,在它从太阳附近经过时确实会变化。然而相对论和光速不变原理不能被抛弃。

与引力的关系编辑本段回目录

光速爱因斯坦认识到,引力是无法自由运动的观察者们经历的某种幻象。想象从一堵墙上跳下。在自由落体的过程中,你不会感动周围的引力作用,但任何在地面上瞧着你落下来的人,都会解释说你的运动是引力的作用所致。同样的说法对空间站中的宇航员也适用:他们被提及时总是说成时处在“零重力”环境里,但从地球的表面往上看,我们会用引力吸引来解释他们绕地球的轨道运动。所以当我们从地球上观察时,经过太阳附近的光线看上去弯曲、加速了,但如果我们自由落体地落向太阳,光线看上去会以恒速沿直线经过我们身边。对任何自由落体的观察者来说,经过他的光线都以恒定速度运动。不过,它在掠过扭曲其附近时空的大质量物体时,看上去会弯曲和加速。

相对论另一个奇怪的推论是,没有任何物体能加速到光速。不和我们建造动力多么强劲的火箭飞船,它们也永远不能到达光速。这是因为物体运动得越快,其动能越大,惯性也越大。爱因斯坦在他的E=mc2公式中指出,能量和质量或者说惯性相关联。因此一个物体的动能增加,它的惯性也增加,从而越来越难继续加速。这是一个收益递减原理:你对一个物体做的功越多,它就变得越重,加速的效果也越微弱。

把单一电子加速到光速,就需要无限的能量,粒子物理学家们对这一限制深有感触。质子进入美国伊利诺伊州Batawia费米实验室的Tevatron加速器时,它们的速度已经达到光速的99%。加速器的最后阶段使质子的能量提高了100倍,但速度仅增加到光速的99.99995%,与它们进入加速器的速度相比,提高不足1%。

不过,一直与相对论有冲突的量子理论看上去是允许物质以大于光速的速度运动的。在20世纪20年代,量子论显示一个系统相隔遥远的不同组成部分能够瞬时联系。例如,当一个高能光子衰变成两个低能光子时,它们的状态(例如,是顺时针或逆时针自旋)是不定的,直到对它们中间的某一个作出观察才确定下来。另一个粒子看上去感知到它的同伴被进行了一次观测,结果是任何对第二个粒子的测量总会得到与对第一个粒子的测量相一致的结果。这样远距离的瞬时联系,看起来像是一个讯息以无限大的速度在粒子之间传递了。它被爱因斯坦称为“幽灵式的超距作用”,听起来难以置信,但却是真实的现象。

1993年,加利福尼亚大学伯克利分校的RaymondChiao表明,量子理论还允许另一种超光速旅行存在:量子隧穿。想象朝一堵坚实的墙上踢一个足球,牛顿力学预言它会被弹会,但量子力学预言它还有极小的可能出现在墙的另一面。考虑这种情况的一种途径,是想象它能“借”到足够的能量穿越墙壁,并在到达另一面之后立即将能量归还。这并不违反物理定律,因为最终能量、动量和其它属性都得到了保存。德国物理学家维纳•海森堡的测不准原理表明,在一个系统中,总有某些属性——在这一情况中是能量——的值是不能确定的,因此量子物理学原理允许系统利用这种不确定性,短时间借到一些额外的能量。在隧穿的情况中,粒子从障碍物的一面消失又从另一面重现的需要几乎可以忽略不计,障碍物可以任意的厚——不过随着厚度增加,粒子隧穿的几率也就迅速地朝零的方向递减。

Chiao通过测量可见光光子通过特定过滤器的隧穿时间,证明了隧穿“超光速”隧穿效应的存在。为此,他让这些光子与在相似时间内穿过真空的光子进行比较。结果隧穿光子先到达探测器,Chiao证明它们穿越过滤器的速度可能为光速的1.7倍。

1994年,维也纳技术大学的FerencKraus表明,隧穿时间有一个不依赖于障碍物厚度的上限,这表示光子隧穿障碍物的时间没有上限。德国科隆大学的GunterNimtz也用微波实现了这种“超光速”。他甚至把莫扎特第40号交响曲调制在信号上,以4.7倍光速的速度将它传输通过12厘米厚的障碍物。

信息传递的极限编辑本段回目录

光速上述这些想法看上去都动摇了禁止超光速的相对论原理。然而它们都没有,因为相对论所禁止的实际上是信息的超光速传输。实验已经表明两个量子物体之间的“瞬时联系”不能用来传递信息。隧穿效应也受到同样的限制。这是由于量子理论是一种内在统计规律,它依赖于大量粒子群体的性质。因此几个光子超越时间是不能用于传递信息的。隧穿效应使输入的波形变形,使之产生一个可能比预期时间更早被接收到的波峰。然而,信息不是由单一波峰携带的,而是由整个波包传送,后者不会运动得比光快。对隧穿效应的谨慎分析结果,似乎支持信号的信息内容仍受到光速限制的说法,尽管这仍是一个有争议的话题。

信息传递的这一速度限制保护了因果律,即一个事件的结果不能比该事件更早发生。如果不是这样,以不同速度运动的观察者将永远不会对一系列特定相关事件的顺序得出相同的结论。有的人可能打了一个茶杯,看到它的碎片四散开来,另一个观察者却可能先看到碎片,然后才看到茶杯落下。如果没有信息传递速度的这个限制,宇宙看起来会非常的古怪。

尽管在真空里不可能使一个有质量的粒子运动得比光更快,在“折射率”超过1的物质内部,就不是这样。例如在水里,光运动的速度是其真空速度的60%。光在不同的透明材料里速度会放慢,这一事实在300年前就被人发现。它能够解释光的折射和散射,这也是所有光学仪器背后的原理。折射的产生,是因为光子——组成光的独立能量单位——与原子内部的电子产生相互作用。光子在原子之间以全速运行,但在穿过材料的过程中反复地被吸收和重新释放,因此它们所携带的信息传播的速度会下降。于是,像高能电子这样的粒子在水中完全可能比光在同一介质中运动得快。这种情况下,它们产生电磁波,后者的运动速度没有粒子快,就会沿运动方向聚集形成一个剧烈的冲击波,这与超音速飞机产生音爆的机理相同。物质介质中运动得比光快的粒子产生的这种辐射称为切伦科夫辐射,常用于检测其它运动得比光快的不可见粒子,例如在东京宇宙线研究所神岗宇宙粒子研究设施中装满水的巨大探测器里寻找中微子。

大多数物质不会使光速明显变慢,在一般物质里,光速可下降的幅度不超过50%左右。然而,1998年美国哈佛大学的LeneVestergaardHau宣布,她把光速降到了每秒17米。2001年,她使光完全停止了。当然,她的研究小组所用的不是普通材料,而是处于所谓(继固态、液态、气态和等离子态之后的)第五种物质状态:玻色-爱因斯坦凝聚态的物质。 

这种非同寻常的物质由一团原子云组成,这团原子云冷却到绝对零度以上百万分之一度,从而形成玻色-爱因斯坦凝聚。它实质是一个单一的量子物体,有点像一个巨大的原子,其中所有的原子都处在同一量子态上,以同样方式运动,仿佛它们就是一个物体。

使光速变慢的技巧,在于用两束垂直相交的光速照射玻色-爱因斯坦凝聚体。其中一束携带信息,称为探测光;另一束称为耦合光。耦合光照射到凝聚体上时,会使它变得完全透明,从而使探测光能够穿过。

光速钠原子的最外层轨道上有一个电子,探测光与这个电子之间的相互作用对这一过程非常关键。当一个原子从探测光速吸收一个光子时,外层电子跳到一个较高的能级。很短一段时间之后,它又跌回到原来的能级,释放出一个光子。不走运的是,这个过程完全是随机的,因此原有光束中所有的信息都丢失了。

探测光脉冲频率不同的组成部分在穿过凝聚物时速度不同,这样的结果是一个输入脉冲在钠原子云中聚成一团,缓缓通过,其间原子的自旋受脉冲的影响发生变化。如果耦合光在此时被撤去,光脉冲(或至少是其中的信息)就被束缚在原子的自旋方式里,光束实质上停止了。耦合光再次亮起,凝聚物就重新释放出光脉冲。

放慢或停止光的脚步,可能在运算方面获得实际应用。物理学家长久以来一直想制造光计算机,利用光速而非电子来传递信号、执行运算。他们还希望造出量子计算机,利用原子的量子态和奇异的量子原理来制造运算能力超强的处理器。Hau对付光的技巧还可能帮助科学家们模拟光在黑洞附近的行为。实际上,研究光速也许是解开宇宙最深奥秘——那些由光速帮助决定的奥秘——的最佳途径。

附件列表


→如果您认为本词条还有待完善,请 编辑词条

上一篇频谱

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
0

收藏到:  

词条信息

skylook
skylook
超级管理员
词条创建者 发短消息   

相关词条