维基天文 >>所属分类 >>

哥德巴赫猜想

标签: 暂无标签

顶[0] 发表评论(0) 编辑词条

哥德巴赫猜想是世界近代三大数学难题之一。1742年,由德国中学教师哥德巴赫在教学中首先发现的。1742年6月7日哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:a.任何一个大于 6的偶数都可以表示成两个素数之和。b.任何一个大于9的奇数都可以表示成三个素数之和。 这就是哥德巴赫猜想。欧拉在回信中说,他相信这个猜想是正确的,但他不能证明。 从此,这道数学难题引起了几乎所有数学家的注意。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。  

目录

简介编辑本段回目录

①数论中著名难题之一。1742年,德国数学家哥德巴赫提出:每一个不小于6的偶数都是两个奇素数之和;每一个不小于9的奇数都是三个奇素数之和。实际上,后者是前者的推论。两百多年来,许多数学家孜孜以求,但始终未能完全证明。1966年,中国数学家陈景润证明了“任何一个充分大的偶数都可以表示成一个素数与另一个素因子不超过2个的数之和”,简称“1 2”。这是迄今世界上对“哥德巴赫猜想”研究的最佳成果。

②报告文学。徐迟作。1978年发表。数学家陈景润从小酷爱数学。进入厦门大学数学系后,他又与世界著名数学难题--哥德巴赫猜想结下了不解之缘。“文化大革命”中尽管遭到批斗和不公正的待遇,但他仍埋头钻研数学,终于完成了被国际数学界所公认的“陈氏定理”。

3,报告文学《哥德巴赫猜想传奇》王晓明著,1999年3期(中华传奇杂志)。

发展编辑本段回目录


这个问题是德国数学家哥德巴赫(C.Goldbach,1690-1764)于1742年6月7日在给大数学家欧拉的信中提出的,所以被称作哥德巴赫猜想(Goldbach Conjecture)。同年6月30日,欧拉在回信中认为这个猜想可能是真的,但他无法证明。现在,哥德巴赫猜想的一般提法是:每个大于等于6的偶数,都可表示为两个奇素数之和;每个大于等于9的奇数,都可表示为三个奇素数之和。其实,后一个命题就是前一个命题的推论。

哥德巴赫猜想貌似简单,要证明它却着实不易,成为数学中一个著名的难题。18、19世纪,所有的数论专家对这个猜想的证明都没有作出实质性的推进,直到20世纪才有所突破。1937年苏联数学家维诺格拉多夫(и.M.Bиногралов,1891-1983),用他创造的"三角和"方法,证明了"任何大奇数都可表示为三个素数之和"。不过,维诺格拉多夫的所谓大奇数要求大得出奇,与哥德巴赫猜想的要求仍相距甚远。

直接证明哥德巴赫猜想不行,人们采取了“迂回战术”,就是先考虑把偶数表为两数之和,而每一个数又是若干素数之积。如果把命题"每一个大偶数可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b",那么哥氏猜想就是要证明"1+1"成立。从20世纪20年代起,外国和中国的一些数学家先后证明了"9+9""2十3""1+5""l+4"等命题。

1966年,我国年轻的数学家陈景润,在经过多年潜心研究之后,成功地证明了"1+2",也就是"任何一个大偶数都可以表示成一个素数与另一个素因子不超过2个的数之和"。这是迄今为止,这一研究领域最佳的成果,距摘取这颗"数学王冠上的明珠仅一步之遥,在世界数学界引起了轰动。但这一小步却很难迈出。“1+2”被誉为陈氏定理。

哥德巴赫的问题可以推论出以下两个命题,只要证明以下两个命题,即证明了猜想:

(a) 任何一个>=6之偶数,都可以表示成两个奇质数之和。 (b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。

这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。到了20世纪20年代,才有人开始向它靠近。1920年,挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比6大的偶数都可以表示为(9+9)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫猜想”。

成绩编辑本段回目录

最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理(Chen's Theorem) 。“任何充份大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。” 通常都简称这个结果为大偶数可表示为 “1+2 ”的形式。在陈景润之前,关於偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称“s + t ”问题)之进展情况如下:

1920年,挪威的布朗(Brun)证明了 “9+9 ”。
1924年,德国的拉特马赫(Rademacher)证明了“7+7 ”。
1932年,英国的埃斯特曼(Estermann)证明了 “6+6 ”。
1937年,意大利的蕾西(Ricei)先后证明了“5+7 ”, “4+9 ”, “3+15 ”和“2+366 ”。
1938年,苏联的布赫 夕太勃(Byxwrao)证明了“5+5 ”。
1940年,苏联的布赫 夕太勃(Byxwrao)证明了 “4+4 ”。
1948年,匈牙利的瑞尼(Renyi)证明了“1+c ”,其中c是一很大的自然数。
1956年,中国的王元证明了 “3+4 ”。
1957年,中国的王元先后证明了 “3+3 ”和 “2+3 ”。
1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了 “1+5 ”, 中国的王元证明了“1+4 ”。
1965年,苏联的布赫 夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及 意大利的朋比利(Bombieri)证明了“1+3 ”。
1966年,中国的陈景润证明了 “1+2 ”。


质疑

  一、陈景润证明的不是哥德巴赫猜想
  陈景润与邵品宗合著的【哥德巴赫猜想】第118页(辽宁教育出版社)写道:陈景润定理的“1+2”结果,通俗地讲是指:对于任何一个大偶数N,那么总可以找到奇素数P',P",或者P1,P2,P3,使得下列两式至少一式成立:“
  N=P'+P" (A)
  N=P1+P2*P3 (B)
  当然并不排除(A)(B)同时成立的情形,例如62=43+19,62=7+5X11。”
  众所周知,哥德巴赫猜想是指对于大于4的偶数(A)式成立,【1+2】是指对于大于10的偶数(B)式成立,
  两者是不同的两个命题,陈景润把两个毫不相关的命题混为一谈,并在申报奖项时偷换了概念(命题),陈景润也没有证明【1+2】,因为【1+2】比【1+1】难得多。
  注意:在逻辑上,一个理证如果是正确的,就不允许有反面的困难,凡是差异的事物,都是可以区别的,可以分离的,也就是说,证明一个观点,是不允许“渗透”的,两个物体组合成为一个物体,只能理解一个物体被消灭了,一个被保存了。“1+2”就是1+2,不能说1+2包含了1+1.
  二、陈景润使用了错误的推理形式
  陈采用的是相容选言推理的“肯定肯定式”:或者A,或者B,A,所以或者A或B,或A与B同时成立。 这是一种错误的推理形式,模棱两可,牵强附会,言之无物,什么也没有肯定,正如算命先生那样“:李大嫂分娩,或者生男孩,或者生女孩,或者同时生男又生女(多胎)”。无论如何都是对的,这种判断在认识论上称为不可证伪,而可证伪性是科学与伪科学的分界。相容选言推理只有一种正确形式。否定肯定式:或者A,或者B,非A,所以B。相容选言推理有两条规则:1,否认一部分选言肢,就必须肯定另一部分选言肢;2,肯定一部分选言肢却不能否定另一部份选言肢。可见对陈景润的认可表明中国数学会思维混乱,缺乏基本的逻辑训练。
  三、陈景润大量使用错误概念
  陈在论文中大量使用“充分大”和“殆素数”这两个含糊不清的概念。而科学概念的特征就是:精确性,专义性,稳定性,系统性,可检验性。而“充分大”,陈指10的50万次方,这是不可检验的数。殆素数是说很像素数,小孩子的游戏。
  四、陈景润的结论不能算定理
  陈的结论采用的是特称(某些,一些),即某些N是(A),某些N是(B),就不能算定理,因为所有严格的科学的定理,定律都是以全称(所有,一切,全部,每个)命题形式表现出来,一个全称命题陈述一个给定类的所有元素之间的一种不变关系,适用于一种无穷大的类,它在任何时候都无区别的成立。而陈景润的结论,连概念都算不上。
  五、陈景润的工作严重违背认识规律
  在没有找到素数普遍公式之前,哥氏猜想是无法解决的,正如化圆为方取决于圆周率的超越性是否搞清,事物质的规定性决定量的规定性。

王元院士说:哥德巴赫猜想仅仅指“1+1”;

丘成桐院士说:陈景润的成功是媒体造就的。

意义编辑本段回目录

一件事物之所以引起人们的兴趣,因为我们关心他,假如一个问题的解决丝毫不能引起人类的快感,我们就会闭上眼睛,假如这个问题对我们的知识毫无帮助,我们就会认为它没有价值,假如这件事情不能引起正义和美感,情操和热情就无法验证。

哥德巴赫猜想是数的一种表现次序,人们持久地爱好它,是因为如果没有这种次序,人们就会丧失对更深刻问题的信念——因为无序是对美的致命伤,假如哥德巴赫猜想是错误的,它将限制我们的观察能力。使我们难以跨越一些问题并无法欣赏。一个问题把它无序的一面强加给我们的内心生活,就会使我们的感受趋向丑陋,引起自卑和伤感。哥德巴赫猜想实际是说,任何一个大于3的自然数n.都有一个x, 使得n+x与n-x都是素数,因为,(n+x)+(n-x)=2n.这是一种素数对自然数形式的对称,代表一种秩序,它之所以意味深长,是因为素数这种似乎杂乱无章的东西被人们用自然数n对称地串联起来,正如牧童一声口稍就把满山遍野乱跑的羊群唤在一起,它使人心晃神移,又像生物基因DNA,呈双螺旋结构绕自然数n转动,人们从玄虚的素数看到了纯朴而又充满青春的一面。对称不仅是视觉上的美学概念,它意味着对象的统一。

素数具有一种浪漫的气质,它以神秘的魅力产生一种不定型的朦胧,相比之下,圆周率,自然对数。虚数。费肯鲍姆数就显得单纯多了,欧拉曾用一个公式把它们统一起来。而素数给人们更多的悲剧色彩,有一种神圣不可侵犯的冷漠。当哥德巴赫猜想变成定理,我们可以看到上帝的大智大慧,乘法是加法的重叠,而哥德巴赫猜想却用加法将乘性概括。在这隐晦的命题之中有着深奥的知识。它改变人们对数的看法:乘法的轮郭凭直观就可以一目了然,哥德巴赫猜想体现一种探索机能,贵贱之别是显然的,加法和乘法都是数量的堆积,但乘法是对加法的概括,加法对乘性的控制却体现了两种不同的要求,前者通过感受可以领悟,后者则要求灵感——人性和哲学。静观前者而神往于它的反面(后者),这理想的境界变成了百年的信仰和反思,反思的特殊价值在于满足了深层的好奇,是一切重大发现的精神通路,例如录音是对发音的反思结果,磁生电是对电生磁的反思结果。。。。顺思与反思是一种对称,表明一种活力与生机。顺思是自然的,反思是主动的,顺思产生经验,反思才能产生科学。顺思的内容常常是浅表的公开的,已知的。反思的内容常常是隐蔽的,未知的。反思不是简单的衷情回顾不是对经验的眷念,而是寻找事物本质的终极标准——-对历史真相或事物真相的揭示。

哥德巴赫猜想为什么会吸引人?世界上绝对没有客观方面能打动人的事物和因素。一件事之所以会吸引人,那是因为它具有某种特质能震动观察者的感受力,感受力的大小即观察者的素质。感人的东西往往是开放的。给人以无限遐思和暗示。哥德巴赫猜想以一种表面开朗简洁的形式掩盖它阴险的本质。他周围笼罩着一种强烈的朦胧气氛。他以喜剧的方式挑逗人们开场,却无一例外以悲剧的形式谢幕。他温文尔雅地拒绝一切向她求爱的人们,让追求者争风吃醋,大打出手,自己却在一旁看着一场有一场拙劣的表演。哥氏猜想以一种抽象的美让人们想入非非,他营造一种仙境,挑起人们的欲望和野心,让那些以为有点才能的人劳苦、烦恼、愤怒中死亡。他恣意横行于人类精神的海洋,让智慧的小船难以驾驭,让科研的‘泰坦尼克’一次又一次沉没。

人类的精神威信建立在科学对迷信和无知的胜利之上,人类的群体的精神健康依赖于一种自信,只有自信才能导入完美的信念使理想进入未来中,完美的信念使人生的辛劳和痛苦得以减轻,这样任何惊心动魄的灾难,荡气回肠的悲怆都难以摧毁人的信念,只有感到无能时,信念才会土崩瓦解。肉体在空虚的灵魂诱导之下融入畜类,人类在失败中引发自卑。哥德巴赫猜想的哲学意义正在如此。


附件列表


→如果您认为本词条还有待完善,请 编辑词条

下一篇奇数

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
0

收藏到:  

词条信息

longer
longer
秀才
词条创建者 发短消息   

相关词条