维基天文 >>所属分类 >> 中国天文学家   

梅文鼎

标签: 梅文鼎

顶[202] 发表评论(0) 编辑词条
    中国清初天文学家﹑数学家。字定九﹐号勿庵﹐安徽宣城人。生于明崇祯六年﹐卒于清康熙六十年。少年时从私塾老师罗王宾学习天文知识﹐27岁跟随倪正学习大统历。1675年以后专心致力于天文数学的研究。1679年曾在臬台金长真幕下当教席。1689年到北京教书﹐五年后回家继续研究天文数学﹐直至去世。据他自撰的《勿庵历算书目》(1702)﹐着有天文数学著作七十余种﹐其中数学著作二十余种。他的孙子梅成对魏荔彤编的《梅氏历算全书》(1723)有不同意见﹐于1761年重编《梅氏丛书辑要》六十卷﹐其中数学著作十三种共四十卷﹐即﹕《方程论》六卷(1672)﹐《筹算》二卷(1678)﹐《平三角举要》五卷﹐《弧三角举要》五卷(1684)﹐《勾股举隅》一卷﹐《几何通解》一卷﹐《几何补编》四卷(1692)﹐《少广拾遗》一卷(1692)﹐《笔算》五卷(1693)﹐《环中黍尺》五卷(1700)﹐《堑堵测量》二卷﹐《方圆幂积说》一卷(1710)﹐《度算释例》二卷(1717)等。据《数理精蕴》和《勿庵历算目》﹐未刻的著作有《比例数解》四卷﹐《几何摘要》三卷﹐《勾股测量》一卷﹐《九数存古》十卷﹐《正弦简法补》一卷﹐《数学星槎》一卷﹐《西镜录订注》一卷﹐《周髀算经补注》一卷等。此外尚有诗文著作《绩学堂诗文钞》十卷。 

    明代学者崇尚理学﹐不重视科学研究﹐以致许多传统数学名著已经失传﹐流行的数学著作水平较低﹐对古代数学精华往往不得其解。明末清初传入的西方数学﹐由于中西之争日趋剧烈﹐也很少人能进行实事求是的研究。而梅文鼎当时坚信中国传统数学“必有精理”﹐不遗余力地表彰古代数学﹐使濒于枯萎的老树发出新芽。同时又能正确对待西方数学﹐认为“技取其长而理唯其是”﹐“法有可采何论东西﹐理所当明何分新旧”﹐应该“去中西之见﹐以平心观理”。因此他又使移植过来的西方数学在中国国土上扎下根﹐促进了这个时期数学的发展。 

    在传统数学研究方面﹐梅文鼎比较系统地整理和研究了一次方程组解法﹐勾股形解法以及求高次幂正根的方法。在《方程论》中﹐他纠正了当时一些流行著作的错误﹔对系数为分数的一次方程组提出新的解法。他又最先对数学进行分类﹐把传统数学分为算法和量法。在《勾股举隅》中﹐已知勾﹑股﹑弦﹑勾股和﹑勾股较﹑弦和和﹑弦和较以及勾股积等十四事中任两事﹐可求解勾股形﹐梅文鼎举出若干例题来说明这种算法。在《少广拾遗》中﹐他依据二项定理系数表﹐举例说明求平方﹑立方到十二乘方的正根的方法﹐虽未能恢复和发展增乘开方法﹐但已使明代逐渐消失的求高次幂正根的方法重新发展起来。 

    对当时传进来的西方数学﹐梅文鼎进行了全面的﹑系统的整理和会通工作﹐并且有所创造。《笔算》是介绍《同文算指》的算法﹐《筹算》是介绍纳皮尔算筹的计算﹐《度算释例》是介绍伽利略比例规的算法。根据中国书写的特点和传统的习惯﹐他把《同文算指》的横式算式改为直式﹐把直式的纳皮尔算筹改为横式。在介绍比例规的算法中﹐改正了罗雅谷在其《比例规解》中的讹误。《平三角举要》和《弧三角举要》是系统整理当时传入的平面三角和球面三角﹐并对“不详其理”的公式和定理进行推导与证明。罗雅谷的《测量全义》记有四面体﹑六面体﹑八面体﹑十二面体和二十面体的体积公式并算出边长为 100的上述多面体的体积。梅文鼎在《几何补编》中证明了除六面体外的其他四种多面体的体积和内切球半径的公式﹐纠正了《测量全义》计算二十面体体积的错误。他还研究了许多复杂的有关正多面体的作图问题﹐例如在一个正六面体内作一个正二十面体﹐使其十二个顶点都在六面体的六个面上。对于《几何原本》﹐梅文鼎认为此书“以点线面体为测量之资﹐制器作图颇为精密”﹐但“篇目既多﹐而取径纡回﹐波澜阔远﹐枝叶扶疏﹐读者每难卒业”。因此他用传统的勾股算法进行会通﹐证明了《几何原本》卷二﹑卷三﹑卷四﹑卷六中15个定理。《堑堵测量》是用勾股算法会通球面直角三角形的边角关系公式。《环中黍尺》是用直角射影的方法证明球面三角学的余弦定理。结合球面三角计算的需要﹐梅文鼎在此书中还用几何方法证明平面三角学的积化和差公式。 

    梅文鼎终生从事天文数学研究﹐有天文著作六十二种﹐在《梅氏丛书辑要》中收入十种二十卷。他的著作有释义﹐有理论﹐有解法﹐有应用﹐既坚持了中国古代数学密切联系实际的传统﹐又十分重视数学理论的研究。他的研究范围几乎涉及当时可能接触到的各个领域。并在一些领域中取得了有相当水平的研究成果。与他同时或在他以后﹐慕名向他求教的学者很多﹐有些文献甚至记有“裹粮走千里﹐往见梅文鼎”的说法。康熙皇帝于1705年曾三次召见他﹐向他请教天文数学。清代著名学者钱大昕曾誉他为“国朝算学第一”。

附件列表


→如果您认为本词条还有待完善,请 编辑词条

上一篇刘焯下一篇石申

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
202

收藏到:  

词条信息

skylook
skylook
超级管理员
词条创建者 发短消息   

相关词条