维基天文 >>所属分类 >> 物理   

量子力学

标签: 量子力学

顶[] 发表评论(0) 编辑词条

量子力学量子物理、量子力学
量子力学是研究微观粒子的运动规律的物理学分支学科,它主要研究原子分子凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。

目录

[显示全部]

简单概述编辑本段回目录

量子力学是描写微观物质的一个物理学理论,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学如原子物理学固体物理学核物理学粒子物理学以及其它相关的学科都是以量子力学为基础。

19世纪末,经典力学经典电动力学在描述微观系统时的不足越来越明显。量子力学是在20世纪初由普朗克尼尔斯·玻尔沃纳·海森堡薛定谔沃尔夫冈·泡利德布罗意马克斯·玻恩恩里科·费米保罗·狄拉克等一大批物理学家共同创立的。通过量子力学的发展人们对物质的结构以及其相互作用的见解被革命化地改变。通过量子力学许多现象才得以真正地被解释,新的、无法直觉想象出来的现象被预言,但是这些现象可以通过量子力学被精确地计算出来,而且后来也获得了非常精确的实验证明。除通过广义相对论描写的引力外,至今所有其它物理基本相互作用均可以在量子力学的框架内描写(量子场论)。

量子力学的基本原理包括量子态的概念,运动方程、理论概念和观测物理量之间的对应规则和物理原理。

在量子力学中,一个物理体系的状态由波函数表示,波函数的任意线性叠加仍然代表体系的一种可能状态。状态随时间的变化遵循一个线性微分方程,该方程预言体系的行为,物理量由满足一定条件的、代表某种运算的算符表示;测量处于某一状态的物理体系的某一物理量的操作,对应于代表该量的算符对其波函数的作用;测量的可能取值由该算符的本征方程决定,测量的期待值由一个包含该算符的积分方程计算。

波函数的平方代表作为其变数的物理量出现的几率。根据这些基本原理并附以其他必要的假设,量子力学可以解释原子和亚原子的各种现象。

关于量子力学的解释涉及许多哲学问题,其核心是因果性和物理实在问题。按动力学意义上的因果律说,量子力学的运动方程也是因果律方程,当体系的某一时刻的状态被知道时,可以根据运动方程预言它的未来和过去任意时刻的状态。

但量子力学的预言和经典物理学运动方程(质点运动方程和波动方程)的预言在性质上是不同的。在经典物理学理论中,对一个体系的测量不会改变它的状态,它只有一种变化,并按运动方程演进。因此,运动方程对决定体系状态的力学量可以作出确定的预言。

但在量子力学中,体系的状态有两种变化,一种是体系的状态按运动方程演进,这是可逆的变化;另一种是测量改变体系状态的不可逆变化。因此,量子力学对决定状态的物理量不能给出确定的预言,只能给出物理量取值的几率。在这个意义上,经典物理学因果律在微观领域失效了。

据此,一些物理学家和哲学家断言量子力学摈弃因果性,而另一些物理学家和哲学家则认为量子力学因果律反映的是一种新型的因果性——几率因果性。量子力学中代表量子态的波函数是在整个空间定义的,态的任何变化是同时在整个空间实现的。

20世纪70年代以来,关于远隔粒子关联的实验表明,类空分离的事件存在着量子力学预言的关联。这种关联是同狭义相对论关于客体之间只能以不大于光速的速度传递物理相互作用的观点相矛盾的。于是,有些物理学家和哲学家为了解释这种关联的存在,提出在量子世界存在一种全局因果性或整体因果性,这种不同于建立在狭义相对论基础上的局域因果性,可以从整体上同时决定相关体系的行为。

量子力学用量子态的概念表征微观体系状态,深化了人们对物理实在的理解。微观体系的性质总是在它们与其他体系,特别是观察仪器的相互作用中表现出来。

人们对观察结果用经典物理学语言描述时,发现微观体系在不同的条件下,或主要表现为波动图象,或主要表现为粒子行为。而量子态的概念所表达的,则是微观体系与仪器相互作用而产生的表现为波或粒子的可能性。

量子力学表明,微观物理实在既不是波也不是粒子,真正的实在是量子态。真实状态分解为隐态和显态,是由于测量所造成的,在这里只有显态才符合经典物理学实在的含义。微观体系的实在性还表现在它的不可分离性上。量子力学把研究对象及其所处的环境看作一个整体,它不允许把世界看成由彼此分离的、独立的部分组成的。关于远隔粒子关联实验的结论,也定量地支持了量子态不可分离。

发展简史编辑本段回目录

量子力学是在旧量子论的基础上发展起来的。旧量子论包括普朗克的量子假说、爱因斯坦的光量子理论和玻尔的原子理论

1900年,普朗克提出辐射量子假说,假定电磁场和物质交换能量是以间断的形式(能量子)实现的,能量子的大小同辐射频率成正比,比例常数称为普朗克常数,从而得出黑体辐射能量分布公式,成功地解释了黑体辐射现象。

光量子(光子)-内部结构模型图光量子(光子)-内部结构模型图

1905年,爱因斯坦引进光量子(光子)的概念,并给出了光子的能量、动量与辐射的频率和波长的关系,成功地解释了光电效应。其后,他又提出固体的振动能量也是量子化的,从而解释了低温下固体比热问题。

1913年,玻尔在卢瑟福有核原子模型的基础上建立起原子的量子理论。按照这个理论,原子中的电子只能在分立的轨道上运动,原子具有确定的能量,它所处的这种状态叫“定态”,而且原子只有从一个定态到另一个定态,才能吸收或辐射能量。这个理论虽然有许多成功之处,但对于进一步解释实验现象还有许多困难。

在人们认识到光具有波动和微粒的二象性之后,为了解释一些经典理论无法解释的现象,法国物理学家德布罗意于1923年提出微观粒子具有波粒二象性的假说。德布罗意认为:正如光具有波粒二象性一样,实体的微粒(如电子、原子等)也具有这种性质,即既具有粒子性也具有波动性。这一假说不久就为实验所证实。

由于微观粒子具有波粒二象性,微观粒子所遵循的运动规律就不同于宏观物体的运动规律,描述微观粒子运动规律的量子力学也就不同于描述宏观物体运动规律的经典力学。当粒子的大小由微观过渡到宏观时,它所遵循的规律也由量子力学过渡到经典力学。

量子力学与经典力学的差别首先表现在对粒子的状态和力学量的描述及其变化规律上。在量子力学中,粒子的状态用波函数描述,它是坐标和时间的复函数。为了描写微观粒子状态随时间变化的规律,就需要找出波函数所满足的运动方程。这个方程是薛定谔在1926年首先找到的,被称为薛定谔方程。

当微观粒子处于某一状态时,它的力学量(如坐标动量角动量能量等)一般不具有确定的数值,而具有一系列可能值,每个可能值以一定的几率出现。当粒子所处的状态确定时,力学量具有某一可能值的几率也就完全确定。这就是1927年,海森伯得出的测不准关系,同时玻尔提出了并协原理,对量子力学给出了进一步的阐释。

量子力学和狭义相对论的结合产生了相对论量子力学。经狄拉克、海森伯泡利等人的工作发展了量子电动力学。20世纪30年代以后形成了描述各种粒子场的量子化理论——量子场论,它构成了描述基本粒子现象的理论基础。

量子力学是在旧量子论建立之后发展建立起来的。旧量子论对经典物理理论加以某种人为的修正或附加条件以便解释微观领域中的一些现象。由于旧量子论不能令人满意,人们在寻找微观领域的规律时,从两条不同的道路建立了量子力学。

1925年,海森堡基于物理理论只处理可观察量的认识,抛弃了不可观察的轨道概念,并从可观察的辐射频率及其强度出发,和玻恩、约尔丹一起建立起矩阵力学;1926年,薛定谔基于量子性是微观体系波动性的反映这一认识,找到了微观体系的运动方程,从而建立起波动力学,其后不久还证明了波动力学和矩阵力学的数学等价性;狄拉克和约尔丹各自独立地发展了一种普遍的变换理论,给出量子力学简洁、完善的数学表达形式。

关键现象编辑本段回目录

光与物质的相互作用
黑体辐射

量子力学氢原子的电子云的概率密度:从上向下为主量子数n(1、2、3),从左向右为方位角量子数l(s、p、d)
19世纪末,许多物理学家对黑体辐射非常感兴趣。黑体是一个理想化了的物体,它可以吸收,所有照射到它上面的辐射,并将这些辐射转化为热辐射,这个热辐射的光谱特征仅与该黑体的温度有关。使用经典物理这个关系无法被解释。通过将物体中的原子看作微小的谐振子,马克斯·普朗克得以获得了一个黑体辐射的普朗克公式。但是在引导这个公式时,他不得不假设这些原子谐振子的能量,不是连续的(这是经典物理学的观点),而是离散的:

En=nhν
这里n是一个整数,h是一个自然常数。(后来证明正确的公式,应该以n+1/2来代替n,参见零点能量)。1900年,普朗克在描述他的辐射能量子化的时候非常地小心,他仅假设被吸收和放射的辐射能是量子化的。今天这个新的自然常数被称为普朗克常数来纪念普朗克的贡献。其值为

量子力学力学


光电效应
1905年,阿尔伯特·爱因斯坦通过扩展普朗克的量子理论,提出不仅仅物质与电磁辐射之间的相互作用是量子化的,而且量子化是一个基本物理特性的理论。通过这个新理论,他得以解释光电效应。海因里希·鲁道夫·赫兹菲利普·莱纳德等人的实验,发现通过光照,可以从金属中打出电子来。同时他们可以测量这些电子的动能。不论入射光的强度,只有当光的频率,超过一个临限值后,才会有电子被射出。此后被打出的电子的动能,随光的频率线性升高,而光的强度仅决定射出的电子的数量。爱因斯坦提出了光的量子(光子这个名称后来才出现)的理论,来解释这个现象。光的量子的能量为
量子力学力学

在光电效应中这个能量被用来将金属中的电子射出(逸出功)和加速电子(动能):

量子力学力学


 

这里m是电子的质量,v是其速度。假如光的频率太小的话,那么它无法使得电子越过逸出功,不论光强有多大。

原子结构
20世纪初卢瑟福模型是当时被认为正确的原子模型。这个模型假设带负电荷的电子,像行星围绕太阳运转一样,围绕带正电荷的原子核运转。在这个过程中库仑力与离心力必须平衡。但是这个模型有两个问题无法解决。

首先,按照经典电磁学,这个模型不稳定。按照电磁学,电子不断地在它的运转过程中被加速,同时应该通过放射电磁波丧失其能量,这样它很快就会坠入原子核。其次原子的发射光谱,由一系列离散的发射线组成,比如氢原子的发射光谱由一个紫外线系列(赖曼系)、一个可见光系列(巴耳末系)和其它的红外线系列组成。按照经典理论原子的发射谱应该是连续的。

1913年,尼尔斯·玻尔提出了以他命名的玻尔模型,这个模型为原子结构和光谱线,给出了一个理论原理。玻尔认为电子只能在一定能量En的轨道上运转。假如一个电子,从一个能量比较高的轨道(En),跃到一个能量比较低的轨道(Em)上时,它发射的光的频率为

量子力学力学

通过吸收同样频率的光子,可以从低能的轨道,跃到高能的轨道上。

玻尔模型可以解释氢原子,改善的玻尔模型,还可以解释只有一个电子的离子,即He+,Li2+,Be3+等。但无法准确地解释其它原子的物理现象

物质衍射
1919年克林顿·戴维森等人,首次成功地使用电子进行了衍射试验路易斯·德布罗意由此提出粒子拥有波性,其波长与其动量相关

量子力学力学
 。

简单起见这里不详细描写戴维森等人的试验,而是描写电子的双缝实验。通过这个试验,可以非常生动地体现出多种不同的量子力学现象。

右图显示了这个试验的结果:

量子力学外村彰的衍射试验结果

打在屏幕上的电子是点状的,这个现象与一般感受到的点状的粒子相同。

电子打在屏幕上的位置,有一定的分布概率,随时间可以看出双缝衍射所特有的条纹图像。假如一个光缝被关闭的话,所形成的图像是单缝特有的波的分布概率。

在图中的试验里,电子源的强度非常低(约每秒10颗电子),因此电子之间的衍射可以被排除。显然电子同时通过了两个缝,与自己衍射导致了这个结果。对于经典物理学来说,这个解释非常奇怪。从量子力学的角度来看,电子的分布概率和衍射结果均可以通过

量子力学力学
这两个通过两个栅的、叠加在一起的状态,简易地演算出来。这个试验非常明显地显示出了波粒二象性

这个试验证实了薛定谔开发他的量子力学时所作的假设,即每个粒子也同时可以被一个波函数来描写,而这个波函数是多个不同状态的叠加

数学理论编辑本段回目录

1932年约翰·冯·诺伊曼将量子力学的最重要的基础严谨地公式化。按照诺伊曼的一个物理系统有三个主要部分:其量子态、其可观察量和其动力学(即其发展趋势),此外物理对称性也是一个非常重要的特性。

假设
非相对论性的单粒子量子力学的数学理论基于以下假设:
1.一个物理系统于时间点t的状态可以由希尔伯特空间

量子力学力学
中的一个归一化矢量
量子力学力学
来定义。这里的希尔伯特空间指的是定义了内积的平方可积的线性矢量空间。

2.每个可观测量A可以通过状态空间中的一个厄米算符
量子力学力学
来表示,可观测量A在状态
量子力学力学
期望值(即测量结果的平均值)为
量子力学力学
。经一步的,对应于可观测量的厄米算符的所有本征态构成希尔伯特空间中的正交归一的完备函数系。任意一个态矢量都可以由该算符的本征态展开。如果系统处于算符的本征态上,对应的可观测量具有唯一确定的测量值,即该本征态对应的本征值。对于任意的态,观测量的测量值是各本征值的带权平均。量子力学中的测量是不可逆的,测量后系统处于该测量值的一个特征矢量上。

3.位置算符动量算符之间满足正则对易关系。由此对易关系可以确定动量算符的表达式,而所有的其他算符都可以由位置算符和动量算符表出。由算符的对易式可导出不确定性原理:两个可观察量量子力学力学量子力学力学之间的不确定性为

量子力学力学

 

 

4.状态矢量

量子力学力学
的动力学演化由薛定谔方程表示:
量子力学力学
,在这里哈密顿算符
量子力学力学
通常对应于系统的总能量。

为了描写无法获得最多信息的量子状态物理学家创造了密度矩阵。密度矩阵包含了它所描写的系统通过测量可以获得的最多信息。

近年来数学家和物理学家才找到了一个非常广义的可观察量的数学描述,即广义量子测量(POVM)。这个理论在传统的教科书中基本上还未提到。完备正映射(completelypositivemaps)可以非常广泛、而且在数学上非常优美地描写量子系统的运算。这个新的描写方法扩展了上面所叙述的传统的诺伊曼方法,而且还可以描写上述方法无法描写的现象,比如持续性的不确定性的测量等等。

状态
在经典力学中,一个拥有f自由度的物理系统及其随时间的发展,可以通过f对正则坐标

量子力学力学
完全决定。在量子力学中,两个相互共轭的可观察量,从原则上,就无法无限精确地被测量。因此,如何相应有意义地,定义一个量子物理学的系统,是一个非常基本的问题。在量子力学中,一个物理系统仅通过同时可以被测量的可观察量来定义,是它与经典力学最主要的区别。只有通过彻底地使用这样的状态定义,才能够理论性地描写许多量子物理现象。

在量子力学中,一个物理状态

量子力学
由最多
量子力学
个同时可以被测量的可观察量定义。这些同时可以被测量的可观察量,称为相容可观察量。在测量时,一个可观察量,可以拥有一定的值。可能获得的测量值n,被称为可观察量的本征值。根据系统的不同,它可以是离散的,也可以是连续的。属于这些本征值的状态,被称为该可观察量的本征态。由于上面的定义中的可观察量,是相容的,因此它们互相之间不影响。通过使用适当的过滤,一个已知的量子物理系统,可以被预备到一个一定的状态。以上相容可观察量的本征态为

量子力学力学


这样的状态常被称为“纯量子状态”。

值得注意的是不像经典系统那样,这样的量子状态中,并非所有可测量的特性均被确定。对于与上述相容可观察量不相容的物理量的本征值,只能给出获得一定测量值的概率,但是每个测量值肯定是其可观察量的本征值。这个原则性的不确定性,是从前面所提到的不确定性原理来的。它是量子力学最重要的结论,同时也是许多人反对量子力学的原因。

对于一个现有的量子物理学系统来说,一个可观察量的本征值,所构成的本征状态,组成一个线性的状态空间H。从数学的角度来看这个空间是一个希尔伯特空间。这个状态空间,表示了所有这个系统所可能拥有的状态。因此,即使是非常简单的量子力学系统,比如一个由谐振子组成的系统,它的状态空间就已经有无限多个维了。非常重要的是多个状态的线性组合,也是该状态空间的一部分,即使这个线性组合,不是可观察量的本征态。

量子力学力学


 

这个现象被称为多个状态的叠加。比较直觉地,这就好像一个平面内的两个矢量的和,依然是该平面内的一个矢量。

最简单的一个这样叠加的二态系统的例子是一个量子位元

动力学演化
量子态的动力学有不同的模型(也被称为“绘景”)来表示。通过重新定义算符和状态这些不同的模型可以互相转换,它们实际上是等价的。

薛定谔绘景对一个系统的动力学是这样描述的:一个状态由一个可导的、以时间t为参量的、希尔伯特状态空间上的函数定义。假如

量子力学力学
是对一个时间点t的状态描述的话,那么以下的薛定谔公式成立:
量子力学力学



这里,H是哈密顿算符,相当于整个系统的总能量的可观察量,是一个紧凑地定义的、自伴算符,i是虚数单位,是普朗克常数

海森堡绘景,状态本身不随时间变化,但是可观察量的算符随时间变化。随时间变化的海森堡运算符由以下微分方程定义:

量子力学力学


通过数学演化,可以证明,假如可观察量A在薛定谔绘景中,不随时间变化的话,通过薛定谔绘景和海森堡绘景获得的A的期望值是相同的。

在相互作用绘景中,状态和算符均可随时间变化。但是,状态和算符的哈密顿算符不同。尤其在状态随时间的变化,有精确的解的情况下,这个绘景非常有用。在这个情况下,所有的数学计算,全部规限于算符的时间变化上了。因此,对于状态的哈密顿算符被称为“自由哈密顿算符”,对可观察量的哈密顿算符被称为“相互作用哈密顿算符”。动力学的发展可以由以下两个公式来描写:

量子力学力学


量子力学力学


 

海森堡绘景最类似于经典力学的模型,从教育学的观点来看薛定谔绘景最容易理解。互相作用绘景常被用在摄动理论中(尤其是在量子场论中)。

有些波函数形成不随时间变化的概率分布。许多在经典力学中随时间动态变化的过程,在量子力学中形成这样的“定态波函数”。比如说,原子中的一颗电子,在其最低状态下,在经典力学中,由一个围绕原子核的圆形轨道来描写,而在量子力学中则由一个静态的、围绕原子核的球状波函数来描写。

薛定谔方程海森堡方程和相互作用绘景中的方程一样均是偏微分方程,只有在少数情况下,这些方程才能被精确地解。氦原子的电子结构就已经无法被精确地解了。但是,实际上,有许多不同的技术来求得近似解。一个例子是摄动理论,它使用已知的简单的模型系统的解来计算更复杂的模型。尤其在复杂模型中的相互作用,可以被看作是对简单模型的“小”干扰时,这个技术特别有效。另一个技术是所谓的半经典近似,它尤其适用于量子效应比较小的系统中。

另一个计算量子力学系统的方法是理查德·费曼费曼图积分的方法。在这个技术中,一个量子力学系统的状态值,等于这个系统从一个状态过渡到另一个状态的所有可能的路径的可能性的和。

一个具体例子
在这里以一个自由粒子为例。一个自由粒子的量子态,可以被一个任意在空间分布的波函数来表示。位置和动量是该粒子的可观察量。位置的本征态之一,是一个在一个特定的位置x,拥有一个巨大的值,在所有其它位置的值为0的波函数。在这个情况下,进行一次位置测量的话,可以确定100%的可能性,该粒子位于x。与此同时,其动量的本征态是一个平面波。事实上,该平面波的波长为h/p,在这里h是普朗克常数,而p是该本征态的动量。

一般来说,一个系统不会处于其任何一个可观察量的本征态上,但是假如我们测量一个可观察量的话,其波函数就会立刻处于该可观察量的本征态上。这个过程被称为波函数塌缩。假如,我们知道测量前的波函数是怎样的话,我们可以计算出它塌缩到不同本征态的机率。比如一般来说,上述自由粒子的波函数是一个波包,这个波函数分布于一个平均位置x0周围。它既不是位置,也不是动量的本征态。但假如我们测量这个粒子的位置的话,我们无法精确地预言测量结果,我们只能给出测量结果的可能性。可能我们测量到的位置在x0附近,因为这里的可能性最高。测量后该粒子的波函数倒塌到了一个位于测量结果x的位置本征态。

使用薛定谔方程,来计算上述自由粒子,获得的结果,可以看出该波包的中心,以恒定的速度在空间运动,就像在经典力学中,一个不受力的粒子一样。但是随着时间的发展,这个波包会越来越弥散,这说明其位置测量会越来越不精确。这也说明,随着时间的发展,本来非常明确的位置本征态会不断弥散,而这个弥散的波包就已经不再是位置的本征态了。

物理意义编辑本段回目录

基础
测量过程

量子力学与经典力学的一个主要区别,在于测量过程在理论中的地位。在经典力学中,一个物理系统的位置和动量,可以无限精确地被确定和被预言。至少在理论上,测量对这个系统本身,并没有任何影响,并可以无限精确地进行。在量子力学中,测量过程本身对系统造成影响。

要描写一个可观察量的测量,需要将一个系统的状态,线性分解为该可观察量的一组本征态的线性组合。测量过程可以看作是在这些本征态上的一个投影,测量结果是对应于被投影的本征态的本征值。假如,对这个系统的无限多个拷贝,每一个拷贝都进行一次测量的话,我们可以获得所有可能的测量值的机率分布,每个值的机率等于对应的本征态的系数的绝对值平方。

由此可见,对于两个不同的物理量A和B的测量顺序,可能直接影响其测量结果。事实上,不相容可观察量就是这样的,即

量子力学力学
 。

不确定性原理

最著名的不相容可观察量,是一个粒子的位置x和动量p。它们的不确定性Δx和Δp的乘积,大于或等于普朗克常数的一半:

量子力学力学

 

 

这个公式被称为不确定性原理。它是由海森堡首先提出的。不确定的原因是位置和动量的测量顺序,直接影响到其测量值,也就是说其测量顺序的交换,直接会影响其测量值。

海森堡由此得出结论,认为不确定性是由于测量过程的限制导致的,至于粒子的特性是否真的不确定还未知。玻尔则将不确定性看作是物理系统的一个原理。今天的物理学见解基本上接受了玻尔的解释。不过,在今天的理论中,不确定性不是单一粒子的属性,而是一个系综相同的粒子的属性。这可以视为一个统计问题。不确定性是整个系综的不确定性。也就是说,对于整个系综来说,其总的位置的不确定性Δx和总的动量的不确定性Δp,不能小于一个特定的值:

量子力学力学


 


机率
通过将一个状态分解为可观察量本征态

量子力学力学
的线性组合,可以得到状态在每一个本征态的机率幅ci。这机率幅的绝对值平方|ci|2就是测量到该本征值ni的概率,这也是该系统处于本征态
量子力学力学
的概率。ci可以通过将
量子力学力学
投影到各本征态
量子力学力学
上计算出来:
量子力学力学


因此,对于一个系综的完全相同系统的某一可观察量,进行同样地测量,一般获得的结果是不同的;除非,该系统已经处于该可观察量的本征态上了。通过对系综内,每一个同一状态的系统,进行同样的测量,可以获得测量值ni的统计分布。所有试验,都面临着这个测量值与量子力学的统计计算的问题。

同样粒子的不可区分性和泡利原理
由于从原则上,无法彻底确定一个量子物理系统的状态,因此在量子力学中内在特性(比如质量电荷等)完全相同的粒子之间的区分,失去了其意义。在经典力学中,每个粒子的位置和动量,全部是完全可知的,它们的轨迹可以被预言。通过一个测量,可以确定每一个粒子。在量子力学中,每个粒子的位置和动量是由波函数表达,因此,当几个粒子的波函数互相重叠时,给每个粒子“挂上一个标签”的做法失去了其意义。

这个相同粒子(identicalparticles)的不可区分性,对状态的对称性,以及多粒子系统的统计力学,有深远的影响。比如说,一个由相同粒子组成的多粒子系统的状态,在交换两个粒子“1”和粒子“2”时,我们可以证明,不是对称的

量子力学力学
,就是反对称的
量子力学力学
。对称状态的粒子被称为玻色子,反对称状态的粒子被称为费米子。此外自旋的对换也形成对称:自旋为半数的粒子(如电子、质子和中子)是反对称的,因此是费米子;自旋为整数的粒子(如光子)是对称的,因此是玻色子

这个深奥的粒子的自旋、对称和统计学之间关系,只有通过相对论量子场论才能导出,但它也影响到了非相对论量子力学中的现象。费米子的反对称性的一个结果是泡利不相容原理,即两个费米子无法占据同一状态。这个原理拥有极大的实用意义。它表示在我们的由原子组成的物质世界里,电子无法同时占据同一状态,因此在最低状态被占据后,下一个电子必须占据次低的状态,直到所有的状态均被满足为止。这个现象决定了物质的物理和化学特性

费米子与玻色子的状态的热分布也相差很大:玻色子遵循玻色-爱因斯坦统计,而费米子则遵循费米-狄拉克统计

量子纠缠
往往一个由多个粒子组成的系统的状态,无法被分离为其组成的单个粒子的状态,在这种情况下,单个粒子的状态被称为是纠缠的。纠缠的粒子有惊人的特性,这些特性违背一般的直觉。比如说,对一个粒子的测量,可以导致整个系统的波包立刻塌缩,因此也影响到另一个、遥远的、与被测量的粒子纠缠的粒子。这个现象并不违背狭义相对论,因为在量子力学的层面上,在测量粒子前,你不能定义它们,实际上它们仍是一个整体。不过在测量它们之后,它们就会脱离量子纠缠这状态。

量子脱散
作为一个基本理论,量子力学原则上,应该适用于任何大小的物理系统,也就是说不仅限于微观系统,那么,它应该提供一个过渡到宏观“经典”物理的方法。量子现象的存在提出了一个问题,即怎样从量子力学的观点,解释宏观系统的经典现象。尤其无法直接看出的是,量子力学中的叠加状态,如何应用到宏观世界上来。1954年,爱因斯坦在给马克斯·波恩的信中,就提出了怎样从量子力学的角度,来解释宏观物体的定位的问题,他指出仅仅量子力学现象太“小”无法解释这个问题。

这个问题的另一个例子是由薛定谔提出的薛定谔的猫的思想实验。

直到1970年左右,人们才开始真正领会到,上述的思想实验,实际上并不实际,因为它们忽略了不可避免的与周围环境的相互作用。事实证明,叠加状态非常容易受周围环境的影响。比如说,在双缝实验中,电子或光子与空气分子的碰撞或者发射辐射,就可以影响到对形成衍射非常关键的各个状态

量子力学力学
之间的相位的关系。在量子力学中这个现象,被称为量子脱散。它是由系统状态与周围环境影响的相互作用导致的。这个相互作用可以表达为每个系统状态量子力学力学与环境状态
量子力学力学
的纠缠。其结果是只有在考虑整个系统时(即实验系统+环境系统)叠加才有效,而假如孤立地只考虑实验系统的系统状态量子力学力学的话,那么就只剩下这个系统的“经典”分布了

量子脱散是今天量子力学解释宏观量子系统的经典性质的主要方式。

对于量子计算机来说,量子脱散也有实际意义。在一台量子计算机中,需要多个量子状态尽可能地长时间保持叠加。脱散时间短是一个非常大的技术问题。

应用
在许多现代技术装备中,量子物理学的效应起了重要的作用。从激光电子显微镜原子钟到核磁共振的医学图像显示装置,都关键地依靠了量子力学的原理和效应。对半导体的研究导致了二极管三极管的发明,最后为现代的电子工业铺平了道路。在核武器的发明过程中,量子力学的概念也起了一个关键的作用。

在上述这些发明创造中,量子力学的概念和数学描述,往往很少直接起了一个作用,而是固体物理学化学材料科学或者核物理学的概念和规则,起了主要作用,但是,在所有这些学科中,量子力学均是其基础,这些学科的基本理论,全部是建立在量子力学之上的。

以下仅能列举出一些最显著的量子力学的应用,而且,这些列出的例子,肯定也非常不完全。实际上,在现代的技术中,量子力学无处不在。

原子物理和化学
任何物质的化学特性,均是由其原子和分子的电子结构所决定的。通过解析包括了所有相关的原子核和电子的多粒子薛定谔方程,可以计算出该原子或分子的电子结构。在实践中,人们认识到,要计算这样的方程实在太复杂,而且在许多情况下,只要使用简化的模型和规则,就足以确定物质的化学特性了。在建立这样的简化的模型中,量子力学起了一个非常重要的作用。

一个在化学中非常常用的模型是原子轨道。在这个模型中,分子的电子的多粒子状态,通过将每个原子的电子单粒子状态加到一起形成。这个模型包含着许多不同的近似(比如忽略电子之间的排斥力、电子运动与原子核运动脱离等等),但是它可以近似地、准确地描写原子的能级。除比较简单的计算过程外,这个模型还可以直觉地给出电子排布以及轨道的图像描述。

通过原子轨道,人们可以使用非常简单的原则(洪德定则)来区分电子排布。化学稳定性的规则(八隅律、幻数)也很容易从这个量子力学模型中推导出来。

通过将数个原子轨道加在一起,可以将这个模型扩展为分子轨道。由于分子一般不是球对称的,因此这个计算要比原子轨道要复杂得多。理论化学中的分支,量子化学计算机化学,专门使用近似的薛定谔方程,来计算复杂的分子的结构及其化学特性的学科。

原子核物理学
原子核物理学是研究原子核性质的物理学分支。它主要有三大领域:研究各类次原子粒子与它们之间的关系、分类与分析原子核的结构、带动相应的核子技术进展。

固体物理学
为什么金刚石硬、脆和透明,而同样由碳组成的石墨却软而不透明?为什么金属导热、导电,有金属光泽?发光二极管、二极管和三极管的工作原理是什么?铁为什么有铁磁性?超导的原理是什么?

以上这些例子,可以使人想象出固体物理有多么多样性。事实上,凝聚态物理学是物理学中最大的分支,而所有凝聚态物理学中的现象,从微观角度上,都只有通过量子力学,才能正确地被解释。使用经典物理,顶多只能从表面上和现象上,提出一部分的解释。

以下列出了一些量子效应特别强的现象:

晶格现象 音子、热传导
静电现象 压电效应
电导 绝缘体、导体、半导体、电导、能带结构、近藤效应、量子霍尔效应、超导现象
磁性 铁磁性
低温态 玻色-爱因斯坦凝聚、超流体、费米子凝聚态
维效应 量子线、量子点

 


 

量子信息学
目前研究的焦点在于一个可靠的、处理量子状态的方法。由于量子状态可以叠加的特性。理论上,量子计算机可以高度平行运算。它可以应用在密码学中。理论上,量子密码术可以产生完全可靠的密码。但是,实际上,目前这个技术还非常不可靠。另一个当前的研究项目,是将量子状态传送到远处的量子隐形传送。

与其它物理理论的关系编辑本段回目录

与经典物理的界限
1923年,尼尔斯·玻尔提出了对应原理,认为量子数(尤其是粒子数)高到一定的极限后的量子系统,可以很精确地被经典理论描述。这个原理的背景是,事实上,许多宏观系统,可以非常精确地被经典理论,如经典力学和电磁学来描写。因此一般认为在非常“大”的系统中,量子力学的特性,会逐渐退化到经典物理的特性,两者并不相抵触。

因此,对应原理是建立一个有效的量子力学模型的重要辅助工具。量子力学的数学基础是非常广泛的,它仅要求状态空间是希尔伯特空间,其可观察量是线性的算符。但是,它并没有规定在实际情况下,哪一种希尔伯特空间、哪些算符应该被选择。因此,在实际情况下,必须选择相应的希尔伯特空间和算符来描写一个特定的量子系统。而对应原理则是做出这个选择的一个重要辅助工具。这个原理要求量子力学所做出的预言,在越来越大的系统中,逐渐近似经典理论的预言。这个大系统的极限,被称为“经典极限”或者“对应极限”。因此可以使用启发法的手段,来建立一个量子力学的模型,而这个模型的极限,就是相应的经典物理学的模型。

与相对论的结合
量子力学在其发展初期,没有顾及到狭义相对论。比如说,在使用谐振子模型的时候,特别使用了一个非相对论谐振子

早期的将量子力学与狭义相对论联系到一起的试图,包括使用相应的克莱因-高登方程,或者狄拉克方程,来取代薛定谔方程。这些方程虽然在描写许多现象时已经很成功,但它们还有缺陷,尤其是它们无法描写相对论状态下,粒子的产生和消灭。通过量子场论的发展产生了真正的相对论量子理论。量子场论不但将可观察量如能量或者动量量子化了,而且将媒介相互作用的场量子化了。第一个完整的量子场论是量子电动力学,它可以完整地描写电磁相互作用。

一般在描写电磁系统时,不需要完整的量子场论。一个比较简单的模型,是将带电荷的粒子,当作一个处于经典电磁场中的量子力学物体。这个手段从量子力学的一开始,就已经被使用了。比如说,氢原子的电子状态,可以近似地使用经典的1/r电压场来计算。但是,在电磁场中的量子起伏起一个重要作用的情况下,(比如带电粒子发射一颗光子)这个近似方法就失效了。

强相互作用和弱相互作用
强相互作用的量子场论是量子色动力学,这个理论描述原子核所组成的粒子(夸克和胶子)之间的相互作用。弱相互作用与电磁相互作用结合在电弱相互作用中。

万有引力
至今为止,仅仅万有引力无法使用量子力学来描述。因此,在黑洞附近,或者将整个宇宙作为整体来看的话,量子力学可能遇到了其适用边界。目前使用量子力学,或者使用广义相对论,均无法解释,一个粒子到达黑洞的奇点时的物理状况。广义相对论预言,该粒子会被压缩到密度无限大;而量子力学则预言,由于粒子的位置无法被确定,因此,它无法达到密度无限大,而可以逃离黑洞。因此20世纪最重要的两个新的物理理论,量子力学和广义相对论互相矛盾。

寻求解决这个矛盾的答案,是目前理论物理学的一个重要目标(量子引力)。但是至今为止,找到引力的量子理论的问题,显然非常困难。虽然,一些亚经典的近似理论有所成就,比如对霍金辐射的预言,但是至今为止,无法找到一个整体的量子引力的理论。目前,这个方面的研究包括弦理论等。

解释和哲学观点编辑本段回目录

量子力学可以算作是被验证的最严密的物理理论之一了。至今为止,所有的实验数据均无法推翻量子力学。大多数物理学家认为,它“几乎”在所有情况下,正确地描写能量和物质的物理性质。虽然如此,量子力学中,依然存在着概念上的弱点和缺陷,除上述的万有引力的量子理论的缺乏外,至今为止对量子力学的解释存在着争议。

解释
假如,量子力学的数学模型,是它的适用范围内的完整的物理现象的描写的话,那么,我们发现测量过程中,每次测量结果的机率性的意义,与经典统计理论中的机率,意义不同。即使完全相同的系统的测量值,也会是随机的。这与经典的统计力学中的机率结果不一样。在经典的统计力学中,测量结果的不同,是由于实验者无法完全复制一个系统,而不是因为测量仪器无法精确地进行测量。在量子力学的标准解释中,测量的随机性是基本性的,是由量子力学的理论基础获得的。由于量子力学尽管无法预言单一实验的结果,依然是一个完整的自然的描写,使得人们不得不得出以下结论:世界上不存在通过单一测量可以获得的客观的系统特性。一个量子力学状态的客观特性,只有在描写其整组实验所体现出的统计分布中,才能获得。

爱因斯坦(“量子力学不完整”,“上帝不掷股子”)与尼尔斯·玻尔是最早对这个问题进行争论的。玻尔维护不确定原理互补原理。在多年的、激烈的讨论中,爱因斯坦不得不接受不确定原理,而玻尔则削弱了他的互补原理,这最后导致了今天的哥本哈根诠释

今天,大多数物理学家,接受了量子力学描述所有一个系统可知的特性,以及测量过程无法改善,不是因为我们的技术问题所导致的的见解。这个解释的一个结果是,测量过程打扰薛定谔方程,使得一个系统塌缩到它的本征态。除哥本哈根诠释外,还有人提出过一些其它解释方式。其中比较有影响的有:

1.戴维·玻姆提出了一个不局部的,带有隐变量的理论(隐变量理论)。在这个解释中,波函数被理解为粒子的一个引波。从结果上,这个理论预言的实验结果,与非相对论哥本哈根诠释的预言完全一样,因此,使用实验手段无法鉴别这两个解释。虽然,这个理论的预言是决定性的,但是,由于不确定原理无法推测出隐变量的精确状态。其结果是与哥本哈根诠释一样,使用这来解释实验的结果,也是一个概率性的结果。至今为止,还不能确定这个解释,是否能够扩展到相对论量子力学上去。路易斯·德布罗意和其他人也提出过类似的隐藏系数解释。

2.休·艾弗雷特三世提出的多世界诠释认为,所有量子理论所做出的可能性的预言,全部同时实现,这些现实成为互相之间一般无关的平行宇宙。在这个诠释中,总的波函数不塌缩,它的发展是决定性的。但是由于我们作为观察者,无法同时在所有的平行宇宙中存在,因此,我们只观察到在我们的宇宙中的测量值,而在其它宇宙中的平行,我们则观察到他们的宇宙中的测量值。这个诠释不需要对测量的特殊的对待。薛定谔方程在这个理论中所描写的也是所有平行宇宙的总和。

3.另一个解释方向是将经典逻辑改成一个量子逻辑来排除解释的困难。

以下列举了对量子力学的解释,最重要的实验和思想实验:

1.爱因斯坦-波多斯基-罗森悖论以及相关的贝尔不等式,明显地显示了,量子力学理论无法使用“局部”隐变量来解释;但是,不排除非局部隐藏系数的可能性。

2.双缝实验是一个非常重要的量子力学试验,从这个试验中,也可以看到量子力学的测量问题和解释的困难性,这是最简单而明显地显示波粒二象性的试验了。

3.薛定谔的猫

哲学问题
量子力学的许多解释,涉及到一般的哲学问题,这些问题又涉及到本体论、认识论和科学哲学的基本概念和理论。以下为一些这些问题:
1.决定论:自然是偶然的还是自然规律是严格决定性的?
2.局部性/可分离性:所有的相互作用都是局部性的还是有远程相互作用?
3.因果
4.现实
5.完全性:存在一个万有理论吗?

相关词条编辑本段回目录

          波粒二象性      不确定关系    量子态态矢量波函 算符本征态本征值     微扰
           量子散射       全同粒子            角动量理论   密度矩阵量子统计 量子测量
           量子缠结      量子脱散            二次量子化     相对论性量子力学 量子场论
  矩阵力学波动力学        决定论                因果律             自由意志 路径积分

 

 

参考资料编辑本段回目录

1.清华大学物理系量子力学教学材料
2.陈涤清:物理简史(六稿)-第八讲量子论
3.量子力学发展史以及简单解释与讨论

附件列表


→如果您认为本词条还有待完善,请 编辑词条

上一篇哈柏定律

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。

收藏到:  

词条信息

张嘉年
张嘉年
秀才
最近编辑者 发短消息   

相关词条